Effect of Dissolved Gases on Sonoluminescence Signal from Aqueous Solutions Irradiated with Megasonic Energy

S. Kumari^a, <u>M. Keswani</u>^a, S. Singh^b, M. Beck^c, E. Liebscher^c, P. Deymier^a, and S. Raghavan^a

 ^a Department of Materials Science and Engineering, The University of Arizona, Tucson, AZ 85721
^b Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721
^c Product Systems Incorporated, Campbell, CA 95008

July 15, 2010

Megasonic Cleaning Process

- Sound waves with frequency of ~ 1 MHz or greater used in combination with different cleaning chemistries for particle removal
- Advantage: High particle removal efficiency Disadvantage: Damage to fragile features

Particles removal mechanism:

> Reduction in Boundary Layer Thickness:

- 1) At 1 MHz of sound frequency, acoustic boundary layer thickness in water is ~ $0.5 \mu m$ and decreases to $0.3 \mu m$ at 3 MHz sound frequency
- 2) Hydrodynamic boundary layer thickness in water varies from 2000 to 400 μm for flow velocity of 2 to 10 m/s
- > Acoustic Streaming: Eckart, Schlichting and Microstreaming
- > Acoustic Cavitation: Stable and Transient

Physical Effect of Cavitation

Sonoluminescence (Photon emission)

- At collapse, the gas inside the cavity reaches extremely high temperatures (4000 °C) and pressures (a few hundred bars).
- > Results in production of free radical species
- Recombination of free radicals gives rise to photon emission.

Particle Removal Studies in Oxygenated Water

Effect of dissolved gases shows cavitation to be important for particle removal

> It is not clearly known how different gases affect cavitation

SL from Water Saturated with different Dissolved Gases

Gas	Relative intensity *(Young 1976)	Thermal conductivity $(10^{-2} W m^{-1} K^{-1})$		
Air	1	2.52		
Nitrogen	0.51	2.52		
Oxygen	1.00	1.64		
Carbon dioxide	0.36	1.56		
Hydrogen	0.36	18-4		
Helium	0.48	14-3		
Neon	1.33	4.72		
Argon	12.5	1.73		
Krypton	21	0.94		
Xenon 52		0.55		

Relative SL intensities from water saturated with various dissolved gases.

* F. Young, J. Acoust. Soc. Am., vol 60, pp. 100-104 (1976)

Aqueous solution containing saturated level of gas was subjected to 20 KHz sound frequency at 10 W/cm² and SL was measured by a photomultiplier tube (165 to 650 nm)
Gases with Higher thermal conductivity showed lower SL

SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

4

Objectives of this Work

To study the SL-behavior of major dissolved gases (N₂, O₂, Ar and CO₂) in a controlled manner in Aqueous Solutions

Component	Symbol	Volume		
Nitrogen	N_2	78.084%		
Oxygen	O ₂	20.947%	00 00804	
Argon	Ar	0.934%	33.330%	
Carbon Dioxide	CO ₂	0.033%		

- To Control SL by consumption/release of some of these gases using chemical means
- THE MAJOR OBJECTIVE OF THIS RESEARCH IS TO CARRY OUT SYSTEMATIC INVESTIGATIONS TO DETERMINE IF AND HOW OXYGEN AND CARBON DIOXIDE ALTERS SL SIGNAL.

ProSys CT Cell and the Experimental Setup

Gas Solubilities in DI Water

Saturating Gas Levels at 25 °C, 1 atm pressure

[Gas]	DIW Saturated With				
PPM	Air	N ₂	O ₂	CO ₂	Ar
N ₂	13.6	17.5	-	-	-
O ₂	8.4	-	44	-	-
CO ₂	0.5	-	-	1500	-
Ar	0.5	-	-	-	55

> Ar, N₂, CO₂ were bubbled in DI Water until [O₂] < 0.3 ppm

> Air Saturated Water obtained by overnight exposure of DI water to clean

room air and confirmed by ensuring [O₂] > 8.2 ppm

SL in DI Water Saturated With Different Gases

All gases except CO₂ (pH ~ 4, dissolved CO₂ ~ 1500 ppm) are capable of generating SL. CO₂ is completely incapable

N₂ and O₂ saturated DI Water generates SL efficiently even though Ar, a gas believed to be essential for SL, is presumably absent

O₂ Removal From Air-Saturated DI Water by an Inorganic O₂ - Scavenger Kills SL Completely

- Oxygen decreases from 8.2 to 0.17 ppm upon addition of *Scavenger* (*dithionite salt*)
- Total gas decreases from 23 ppm to 14.5 ppm

Scavenging of O₂ in O₂-Saturated DIW From 44 to 19 ppm Kills SL Completely

SL-Capable N₂ Can "Replace" O₂ For SL But SL-Incapable CO₂ Cannot

N₂ Restores SL of Air Saturated DI Water From Which O₂ Has Been Removed Using O₂ Scavenger CO₂ Does NOT Restore SL of Air Saturated DI Water From Which O₂ Has Been Removed Using O₂ Scavenger

SL Suppression by Bubbling of CO₂

Addition of CO₂ decreases levels of other dissolved gases slightly.

When Air-saturated DI Water is vaccum degassed to a comparable level, SL remains unaffected. Thus, SL suppression is due to added CO_2 and not due to removal of other gases upon addition of CO_2 .

SL Suppression by CO₂ Released From NH₄HCO₃

These results show CO₂ to be not only incapable but also a strong inhibitor of SL generation.

* Neither HCl alone nor NH₄HCO₃ alone had any effect on SL, ruling out any role of HCO₃⁻ or H⁺ (pH)

➢ 3 mM HCl is added to induce release of CO₂ from NH₄HCO₃

 $ightarrow NH_4HCO_3 = 3 mM$ suppresses SL almost completely

> Initial dissolved gases is unchanged in this experiment as indicated by $[O_2] = 8.5$ ppm, thus SL suppression is due to CO_2 release

Calculation of CO₂ Evolved From NH₄HCO₃

> Upon acidification of NH_4HCO_3 the linked equilibria in water is shifted towards formation of hydrated CO_2 i.e. CO_2 (*hyd*).

> The Equations for equilibrium, mass and charge conservation can be solved numerically and $[CO_2(hyd)]$ and $[H^+]$ concentrations determined as a function of added $[NH_4HCO_3]$.

> Minimum $[CO_2 (hyd)]$ concentration necessary for Complete SL suppression using CO_2 release compounds is 140 ppm, which compares well with >60 ppm value obtained with direct CO_2 bubbling experiments

SL Suppression by CO_2 can also occur at higher pH (~ 6) Value

Profile	Initially Added CO ₂ (mM)	Initially Added NH4OH (mM)	Measured pH	Theoretically Calculated CO ₂ (ppm)	Theoretically Calculated pH	
A	0.0	0.00	5.65	0.6 *	5.65	* (from CO ₂
В	1.0	0.16	5.7	37	5.65	in air)
C	2.0	0.32	5.7	74	5.65	
D	3.0	0.48	5.7	111	5.65	
Е	4.0	0.64	5.7	148	5.65	

SL Generation Correlates With γ = Cp/Cv

SL is generated when the maximum temperature inside a bubble reaches a certain threshold value

> T_{max} , the Maximum temperature reached in an acoustic cavity depends on y and is given by

$$T_{\max} = T_0 \left[\frac{(P_0 + P_A)(\gamma - 1)}{Q} \right]$$
$$\frac{T_{\max}}{(P_0 + P_A)/Q} = T_0(\gamma - 1)$$

- 220 Calculated T_{max} / [(P₀+P_A)/Q] Ar 200 180 160 140 R Air, N_2 , O_2 120 100 CO. 80 60 1.2 1.3 1.4 1.5 1.6 1.7 Polytropic Index (γ)
- $T_{\text{max}} = \text{Max}$ Temperature, Q = Initial Pressure in the Bubble,
- T_0 = Initial Temperature, γ = Polytropic Index
- P_A = Acoustic Pressure Amplitude,
- P_0 = Pressure in Bulk Solution in Absence of Sound Waves
- Suslick and Co-workers (*J. Phys. Chem. A 1999*) have reported $T_{max} = 4000 \text{ deg C}$ for Argon saturated water-benzene mixtures, which can be reproduced from the plot above using $(P_0+P_A)/Q = 21.4$ and $\gamma = 1.67$ for Argon.

Plausible Mechanisms For Reduction Of SL Signal By Carbon Dioxide

- 1. The maximum temperature reached in a carbon dioxide bubble is lowest because of its low γ value.
- 2. CO₂ may scavenge free radicals that may contribute in the generation of SL signal (It is a common practice to bubble CO₂ in ozonated DI water to kill free radicals and extend ozone half life)

Effect of dissolved CO₂ on Damage to Features

Courtesy of Mr. Hrishi Shende (Completed M.S degree under supervision of Prof. Srini Raghavan from Univ. of Arizona)

>DI water saturated with CO_2 gas (1500 ppm) was used.

- Lower pattern damage was observed for CO_2 + DI water system.

Conclusions

- > SL-Capability order of dissolved gases: Ar > Air \approx N₂ \approx O₂
- **SL** can be decreased gradually using O₂ Scavenger
- CO₂ has a strong inhibitory role in SL generation and suppresses SL even in presence of sufficient amounts of other SL-capable gases.
- 60 to 150 ppm CO₂ is sufficient for complete suppression of SL in Air Saturated DI Water
- NH₄HCO₃ can be acidified to release CO₂ in-situ and reduce SL (Cavitation)
- > SL suppression by CO_2 can also occur at higher pH (~ 6) value

Acknowledgements

ProSys Megasonics For Instruments and Financial Support and

Intel for Support During Early Stages of the Project