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Polishing Pad Properties

• Polishing pad is typically 
made of polyurethaneade o po yu et a e

• Pad is designed to
– Provide elastic responsep
– Transport slurries

• Pad surface
SEM of conditioned pad

L. Borucki, 2004

– Consists of asperities with 
range of sizes around 50m
Tail of the pad surface– Tail of the pad surface 
height is ≈ exponentially
distributed
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Surface Height Distribution 
L. Borucki, 2006, ICPT
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Pad Response Model:
Bulk and SurfaceBulk and Surface

• Pad is assumed to consist of 
a bulk material and asperities

Pad
a bu a e a a d aspe es

• Bulk material is assumed to 
be elastic

=

be elastic
– Model with effective pattern 

density Bulk

• Asperities are assumed to 
– Observe Hook’s law, i.e., the 

+

w(x,y)

, ,
force asperity exerts is 
proportional to its compression

– Have a statistical distribution of 
it h i ht

Asperities
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Pad-Wafer Interaction:
Contact-Based Removal Mechanisms

• Material removal is 
believed to be due

Pad Asperity

Fluid
Pad/Particle Motion

believed to be due 
primarily to 3-body contact

• Surface modification by 

Wafer

Pad Asperity

Abrasive
Particle

y
the slurry is necessary

• Different nanoscale 
removal mechanisms have

Wafer Motion

Waferremoval mechanisms have 
been proposed

– Indentation models
– Chemical tooth models
– Pressure-driven dissolution 

models
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Outline

• Physical measurements of CMP pad properties
– Pad modulus
– Asperity height distribution

• Pad aging experiment and property tests
Cu wafer polishing and pad sample collection– Cu wafer polishing and pad sample collection

– Time dependence of pad properties
– Spatial variation in pad properties

• Model for pad-wafer contact 
– Based on mechanical response of pad asperity
– Assumptions and mathematical derivationAssumptions and mathematical derivation
– Contact area and pressure predictions and trends

• Conclusions and future work
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Pad Modulus Measurement:
NanoindentationNanoindentation

• Pad slice nanoindentation:

• Pad asperity nanoindentation:
Max Force 10 mN
Force Resolution 2 nN

Indent Working Mode

Force Resolution 2 nN
Min Contact Force <100 nN
Force Load Rate >50 mN/s
Max Displacement 5 µm

December 16, 2010

Hysitron TriboIndenter

7

Displacement 
Resolution 0.04 nm



Pad Sample

• JSR water soluble 
ti l (WSP) dparticle (WSP) pad

– Soft surface for 
less scratch

– Hard bulk consist 
of soft matrix and 
WSP for betterWSP for better 
planarization

– Surface porosity 
controlled by WSPcontrolled by WSP 
size

http://www.jsr.co.jp/jsr_e/pd/images/pad.pdf
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Pad Slice: Contour Plot of 
Reduced ModulusReduced Modulus

Test Pattern: slice, multiple points

Example:    JSR pad slice, same test area, repeat twice

10µm

1st test

Mean: 462.69MPa

Standard Deviation: 272.44MPa

2nd test (same position on the sample)

Mean: 460.93MPa

Standard Deviation: 270.58MPa
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• There is spatial variation in pad mechanical properties
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Pad Asperity: Depth Dependence
of Reduced Modulus
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• Deep indentation ( > 300 nm):
A it d l h b lk d l

Spring Meeting, April 
2010.

– Asperity modulus approaches bulk modulus
– Bulk estimate = 291 MPa (depth > 300 nm)

• Shallow indentation ( < 100 nm):
S b t ti ll hi h d l 2 t th b lk l
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– Substantially higher modulus, ~2x or greater the bulk value 
– Surface estimate = 572 MPa (depth < 100nm)



Apparent Stiffness of Polymer Surfaces 
under Contact (Tweedie et al.)
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C. Tweedie et al., Adv. Mat., 19, 2540-2546, 2007.



Depth Dependence of
Asperity Modulusp y
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• Surface structure effect or material property
N d b ifi d b i fl d l

Boning and Fan, MRS Spring Meeting, April 2010. C. Tweedie et al., Adv. Mat., 19, 2540-2546, 2007.
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– Needs to be verified by experiments: e.g., flat pad sample test



Pad Asperity Height Distribution

0 999
0.9995

0.9999
Pad Surface Profilometry

JSR Pad

0.99
0.995

0.999

ro
ba

bi
lit

y

Extracted top 1%
λ = 12.7 µm

0 050.25
0.5

0.75
0.9

0.95

P
Extracted top 5%

λ = 9.9 µm

• Consistent with an exponential height distribution

9 10 11 12 13 14 15
0.050.25

Height Difference from Mean (m)

– Exponential in the tail of the distribution, i.e., for heights substantially greater 
than the mean height

– A very small number of very tall asperities (i.e. fewer than 0.02%). We ignore 
these.
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these.
– Possibility of a bimodal (exponential) distribution; useful to extract both.



Outline

• Physical measurements of CMP pad properties
– Pad modulus
– Asperity height distribution

• Pad aging experiment and property tests
Cu wafer polishing and pad sample collection– Cu wafer polishing and pad sample collection

– Time dependence of pad properties
– Spatial variation in pad properties

• Model for pad-wafer contact 
– Based on mechanical response of pad asperity
– Assumptions and mathematical derivationAssumptions and mathematical derivation
– Contact area and pressure predictions and trends

• Conclusions and future work
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Pad Aging Study

• Motivations
– Understand how pad properties change during CMPUnderstand how pad properties change during CMP 

process
– Evaluate pad conditioning effect

• Physical measurements of pad properties
– Asperity reduced modulus: nanoindenter

A it h i ht di t ib ti i fil t– Asperity height distribution: micro profilometer
– Pad groove depth: microscope and positioning 

system on nanoindentery

December 16, 2010 15



Pad Aging Experiment

• Cu wafer polishing with JSR WSP pad
– Polisher: Araca APD-800

P li hi h d d 25– Polishing head speed: 25 rpm
– Reference pressure: 1.5 psi
– Condition head speed: 95 rpm
– Conditioner down force: 8 lbF

• Pad sample collection
• Aging samples: • Spatial samples after 16 hours:g g p Sp p 6

December 16, 2010 16

Sample size: 2.5cm×2.5cm Sample size: 1.5cm×1.5cm



Pad Properties:
Pad Asperity Indentation

• Pad asperity nanoindentation:

Hysitron TriboIndenter Test Pattern Applied

• Indentation curves:
F il d t t i d t ti lidi S f l t t lid t tFailed test: indenter tip sliding Successful test: solid contact

December 16, 2010 17



Pad Aging Results

Asperity Modulus Asperity Height Groove Depth

• Asperity modulus and asperity height distribution are both consistent across 
li hi / diti i tipolishing/conditioning times

• Depth dependence of modulus
– Deep indentation: asperity modulus approaches bulk modulus (<200 MPa)
– Shallow indentation: substantially higher modulus, ~2x or greater the bulk value

December 16, 2010 18

y g , g
• Substantial pad wear during CMP process: groove depth decreases linearly 

with polish time



Spatial Results: Asperity Modulus

OA direction: OB direction:

• No clear radial dependence of asperity reduced modulus
• Depth dependence of modulus

– Deep indentation: asperity modulus approaches bulk modulus (<200 MPa)

December 16, 2010 19

Deep indentation: asperity modulus approaches bulk modulus ( 200 MPa)
– Shallow indentation: substantially higher modulus, ~2x or greater the bulk value



Spatial Results: Asperity Height

OA direction: OB direction:

• No strong radial dependence of asperity height distribution: good 
spatial uniformity of asperity heights with conditioning

After 16 hours polishing (with conditioning)

December 16, 2010 20

spatial uniformity of asperity heights with conditioning



Spatial Results: Groove Depth

Pad sample

Groove depth

Pad sample

• Groove depth has a strong radial dependence: more pad wear 
near the center (non optimized pad conditioning in this case)

After 16 hours polishing (with conditioning)

December 16, 2010 21

near the center (non-optimized pad conditioning in this case)



Summary of Pad Aging Results

• Depth dependence of asperity modulus
• Pad conditioning keeps asperity properties g p p y p p

consistent during CMP process
– Asperity modulus and asperity height distribution are both 

consistent across polishing/conditioning timesconsistent across polishing/conditioning times
– No strong radial dependence of asperity modulus of asperity 

height

• Pad wears linearly with polish time (as measured• Pad wears linearly with polish time (as measured 
by groove depth)

• Pad wear and thickness does not strongly affectPad wear and thickness does not strongly affect 
asperity properties: conditioning effective in 
maintaining pad asperity structure
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Outline

• Physical measurements of CMP pad properties
– Pad modulus
– Asperity height distribution

• Pad aging experiment and property tests
Cu wafer polishing and pad sample collection– Cu wafer polishing and pad sample collection

– Time dependence of pad properties
– Spatial variation in pad properties

• Model for pad-wafer contact 
– Based on mechanical response of pad asperity
– Assumptions and mathematical derivationAssumptions and mathematical derivation
– Contact area and pressure predictions and trends

• Conclusions and future work
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Motivation: CMP Models
Die-Level Non-UniformityWafer-Level Non-Uniformity

CMP Tool & 
Process Setup

Chip Layout 
Design

W f L l

Better CMP Fab-friendly 

Wafer-Level 
CMP Model

Die-Level 
CMP Model

Processes, Tools, 
& Consumables

y
Layout Design

December 16, 2010

Physics of CMP / Particle-Level CMP Model
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State of Modeling in CMP

• Wafer-level modeling
– Velocity, wafer edge pressure distributions

• Die-level modeling
– Pattern density
– Step height
– Pad bulk vs. asperities: height and diameter distributions

• Particle-level modeling: basic mechanisms
– What part of pad participates in polishing? Focusp p p p p g
– What is nature of pad/particle/wafer interaction?

• Challenges for the CMP community
– Have: effective chip-scale models for a fixed process – useful in chip

Focus

Have: effective chip scale models for a fixed process useful in chip 
design and optimization

– Need: fundamental mechanisms and models for varying process, 
pad, slurry, tool, and wafer materials and patterns – useful in 
process design and optimization and in tool/consumable design and

December 16, 2010 25

process design and optimization, and in tool/consumable design and 
optimization



Particle-Level CMP Model

Particle-Level 

Input variables of CMP

• Applied pressure

R l ti l it

Output variables of CMP

• Blanket removal rate

CMP Model• Relative velocity

• Abrasive size

• etc

• Surface quality

• etc

Microscopic Mechanism

Physics of CMP
Macroscopic Phenomenon Microscopic Mechanismp

December 16, 2010

50 nm300 mm ~107 difference in scale
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Overall Physical Modeling Approach
• Pad-wafer interaction
• Pad-abrasive interaction

Ab i f i t ti• Abrasive-wafer interaction
Pad

Dielectric

11mm
PPad

PAbrasive

December 16, 2010
~50nm
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Pad-Wafer Interaction
• Assume “fully supported” asperities
• Asperity compression and asperity contactp y p p y
• Can predict local asperity contact pressure

December 16, 2010 28



Have Physical Model… 
But Many Assumptions!

• Many of these assumptions have not been 
experimentally nailed down:
– What part of pad participates in polish?  Asperity 

height and size distributions? Mechanical 
properties of asperities?

Focus

– What slurry particles participate? Large particles 
only? What particle/asperity loading occurs?

– Effects of slurry chemistry temperature– Effects of slurry chemistry, temperature, …
• Alternative physical assumptions and models are 

possible and have been proposed
• If we can find the correct physics, then model can be 

used to predict results for different pads, slurries (e.g. 
particle sizes), pressures, velocities, etc., …

December 16, 2010 29
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Summary of
Pad-Wafer Interaction Model

• Greenwood Williamson approach
– Asperities have spherical surfaces with same radius
– Elastic Hertzian contact– Elastic Hertzian contact

• Single asperity compression

• Exponential asperity height distribution
Result: Predict contact area fraction f• Result: Predict contact area fraction f

E: asperity reduced modulus
P0: reference pressure

December 16, 2010 30

P0: reference pressure

Boning and Fan, MRS Spring Meeting, April 2010.



Model Trend: Contact Area vs. 
Reference Pressure
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• Contact area increases linearly with P0

0 2 4 6 8 10
P0 (psi)

– Depends on reduced pad modulus
– Using shallow modulus average (stiffer asperities): 

smaller f% for same pressure
– Using deep modulus average (asperities same as bulk):
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– Using deep modulus average (asperities same as bulk): 
predicts larger f% for same pressure



Model Trend: Contact Area vs. 
Characteristic Asperity Heightp y g
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• Contact area decreases with larger λ
– Larger λ implies wider distribution (more taller asperities)
– For wider distribution, a smaller number of tall asperities bear the load,
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For wider distribution, a smaller number of tall asperities bear the load, 
reducing the contact area percent



Consistent with Conditioning/Contact Area Data

C diti A i d C t t A

4 PSI A: Less aggressive
B: More aggressive (3X cut rate of A)

Conditioner Aggressiveness and Contact Area

gg ( )

December 16, 2010

L. Borucki et al., CSITC, March 2010.
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Example Polishing Pad Topography
5050 m

L. Borucki et al., CSITC, 
March 2010

December 16, 2010

March 2010.

34



Simulated Pad-Wafer Interaction
P0 = 5 psi

λ = 11.8 µm

E = 460 MPa
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Simulated Pad-Wafer Interaction
P0 = 10 psi

λ = 11.8 µm

E = 460 MPa
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Simulated Pad-Wafer Interaction
P0 = 50 psi

λ = 11.8 µm

E = 460 MPa
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Simulated Pad-Wafer Interaction
P0 = 150 psi

• Contact area changes with• Contact area changes with 
overall applied pressure

• There is also a distribution of 
asperity contact pressures: has

λ = 11.8 µm

E = 460 MPa
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asperity contact pressures: has 
implications for modeling



Model Parameters and
Measured Results

• Model parameters
– E and λ are single fixed values

• Physical measurements
– Depth dependence of E– Depth dependence of E
– Height range of extracted λ

• How to utilize the measure results in the model
– Modify the model to include nonlinear effect?
– Take the mean value of measured result in a certain range?
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Take the mean value of measured result in a certain range?



Conclusions

• Measurement approaches developed:
– Pad slice indentation test
– Asperity reduced modulus
– Asperity height distribution

Meas rement obser ations• Measurement observations:
– See strong depth dependence of pad asperity 

modulus
– Pad aging evaluation: surface properties remain 

consistent with conditioning

• Model for pad-wafer contact• Model for pad-wafer contact 
– Based on mechanical response of pad asperities
– Contact area predictions and trends
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Future Work
• Compare predicted and measured contact 

fractions

• Understand distribution of asperity size, heights, 
and mechanical propertiesand mechanical properties

• Consider implications of shallow indentation 
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