Characterization and Modeling of CMP Pad Asperity Properties

Wei Fan Microsystems Technology Laboratories, EECS, MIT

December 16, 2010

CMP System and Consumables

IC1000 pad grooves

Abrasive particles in slurry

Conditioning disk

Diamonds on conditioning disk

A CONTRACTOR

Polishing Pad Properties

- Polishing pad is typically made of polyurethane
- Pad is designed to
 - Provide elastic response
 - Transport slurries
- Pad surface

|||ii

- Consists of asperities with range of sizes around 50µm
- Tail of the pad surface height is ≈ exponentially distributed

December 16, 2010

4

Pad Response Model: Bulk and Surface

- Pad is assumed to consist of a bulk material and asperities
- Bulk material is assumed to be elastic
 - Model with effective pattern density
- Asperities are assumed to
 - Observe Hook's law, i.e., the force asperity exerts is proportional to its compression
 - Have a statistical distribution of asperity heights

Pad

Pad-Wafer Interaction: Contact-Based Removal Mechanisms

- Material removal is believed to be due primarily to 3-body contact
- Surface modification by the slurry is necessary
- Different nanoscale removal mechanisms have been proposed
 - Indentation models
 - Chemical tooth models
 - Pressure-driven dissolution models

Plif

Outline

- Physical measurements of CMP pad properties
 - Pad modulus
 - Asperity height distribution
- Pad aging experiment and property tests
 - Cu wafer polishing and pad sample collection
 - Time dependence of pad properties
 - Spatial variation in pad properties
- Model for pad-wafer contact
 - Based on mechanical response of pad asperity
 - Assumptions and mathematical derivation
 - Contact area and pressure predictions and trends
- Conclusions and future work

Pad Modulus Measurement: Nanoindentation

Pad slice nanoindentation:

Pad asperity nanoindentation:

Indent Working Mode	
Max Force	10 mN
Force Resolution	2 nN
Min Contact Force	<100 nN
Force Load Rate	>50 mN/s
Max Displacement	5 µm
Displacement Resolution	0.04 nm

Pad Sample

- JSR water soluble particle (WSP) pad
 - Soft surface for less scratch
 - Hard bulk consist of soft matrix and WSP for better planarization
 - Surface porosity controlled by WSP size

Water Soluble Particles (WSP) Micro Pores Water Soluble Particles (WSP) Micro Pores

http://www.jsr.co.jp/jsr_e/pd/images/pad.pdf

Pad Slice: Contour Plot of Reduced Modulus

Test Pattern: slice, multiple points

There is spatial variation in pad mechanical properties

December 16, 2010

Pad Asperity: Depth Dependence of Reduced Modulus

Deep indentation (> 300 nm):

- Asperity modulus approaches bulk modulus
- Bulk estimate = 291 MPa (depth > 300 nm)

• Shallow indentation (< 100 nm):

- Substantially higher modulus, ~2x or greater the bulk value
- Surface estimate = 572 MPa (depth < 100nm)

Apparent Stiffness of Polymer Surfaces under Contact (Tweedie et al.) 800 15 a) b) C) 01 **E**a [**GP**a] **N**<u>3</u>400 **d** 5 0 120 10° 10¹ 10^{2} 10^{3} 60 h_c [nm] h [nm]

Figure 1. Apparent stiffness of polymer surfaces under contact. a) Schematic of a nanoindentation probe (image reconstructed from atomic force microscopy, scalebar = 500 nm) approaching an amorphous polymer surface with higher molecular mobility over the first ~40 nm from the surface. b) Representative indentation load-displacement curves to five maximum loads *P* corresponding to a range of indentation depths *h* are displayed alternately in black and grey. c) The indentation elastic modulus *E* increases with decreasing indentation depth h_c in compression molded polystyrene, molecular weight $M_w = 12 \text{ kg/mol}$. Error bars represent one standard deviation and may be smaller than the symbol.

C. Tweedie et al., Adv. Mat., 19, 2540-2546, 2007.

December 16, 2010

Depth Dependence of Asperity Modulus

Boning and Fan, MRS Spring Meeting, April 2010.

C. Tweedie et al., Adv. Mat., 19, 2540-2546, 2007.

 10^{3}

- Surface structure effect or material property
 - Needs to be verified by experiments: e.g., flat pad sample test

|||;;

Pad Asperity Height Distribution

Pad Surface Profilometry

- Consistent with an exponential height distribution
 - Exponential in the tail of the distribution, i.e., for heights substantially greater than the mean height
 - A very small number of very tall asperities (i.e. fewer than 0.02%). We ignore these.
 - Possibility of a **bimodal** (exponential) distribution; useful to extract both.

ШiГ

Outline

- Physical measurements of CMP pad properties
 - Pad modulus
 - Asperity height distribution

• Pad aging experiment and property tests

- Cu wafer polishing and pad sample collection
- Time dependence of pad properties
- Spatial variation in pad properties
- Model for pad-wafer contact
 - Based on mechanical response of pad asperity
 - Assumptions and mathematical derivation
 - Contact area and pressure predictions and trends
- Conclusions and future work

MiT

Pad Aging Study

- Motivations
 - Understand how pad properties change during CMP process
 - Evaluate pad conditioning effect
- Physical measurements of pad properties
 - Asperity reduced modulus: nanoindenter
 - Asperity height distribution: micro profilometer
 - Pad groove depth: microscope and positioning system on nanoindenter

Pad Aging Experiment

- Cu wafer polishing with JSR WSP pad
 - Polisher: Araca APD-800
 - Polishing head speed: 25 rpm
 - Reference pressure: 1.5 psi
 - Condition head speed: 95 rpm
 - Conditioner down force: 8 lbF
- Pad sample collection
 - Aging samples:

Sample size: 2.5cm×2.5cm

• Spatial samples after 16 hours:

Sample size: 1.5cm×1.5cm

IIIii

Pad Properties: Pad Asperity Indentation

Pad asperity nanoindentation:

Hysitron TriboIndenter

Indentation curves:

December 16, 2010

|||;;

- Asperity modulus and asperity height distribution are both consistent across polishing/conditioning times
- Depth dependence of modulus
 - Deep indentation: asperity modulus approaches bulk modulus (<200 MPa)
 - Shallow indentation: substantially higher modulus, ~2x or greater the bulk value
- Substantial pad wear during CMP process: groove depth decreases linearly with polish time

December 16, 2010

No clear radial dependence of asperity reduced modulus

Depth dependence of modulus

- Deep indentation: asperity modulus approaches bulk modulus (<200 MPa)
- Shallow indentation: substantially higher modulus, ~2x or greater the bulk value

After 16 hours polishing (with conditioning)

• No strong radial dependence of asperity height distribution: good spatial uniformity of asperity heights with conditioning

After 16 hours polishing (with conditioning)

• Groove depth has a strong radial dependence: more pad wear near the center (non-optimized pad conditioning in this case)

Summary of Pad Aging Results

- Depth dependence of asperity modulus
- Pad conditioning keeps asperity properties consistent during CMP process
 - Asperity modulus and asperity height distribution are both consistent across polishing/conditioning times
 - No strong radial dependence of asperity modulus of asperity height
- Pad wears linearly with polish time (as measured by groove depth)
- Pad wear and thickness does not strongly affect asperity properties: conditioning effective in maintaining pad asperity structure

Plif

Outline

- Physical measurements of CMP pad properties
 - Pad modulus
 - Asperity height distribution
- Pad aging experiment and property tests
 - Cu wafer polishing and pad sample collection
 - Time dependence of pad properties
 - Spatial variation in pad properties
- Model for pad-wafer contact
 - Based on mechanical response of pad asperity
 - Assumptions and mathematical derivation
 - Contact area and pressure predictions and trends
 - Conclusions and future work

Motivation: CMP Models Шii Wafer-Level Non-Uniformity **Die-Level Non-Uniformity** CMP Tool & Chip Layout Process Setup Design Wafer-Level **Die-Level CMP Model CMP Model** Better CMP Fab-friendly Layout Design Processes, Tools, & Consumables

Physics of CMP / Particle-Level CMP Model

State of Modeling in CMP

- Wafer-level modeling
 - Velocity, wafer edge pressure distributions
- Die-level modeling
 - Pattern density
 - Step height
 - Pad bulk vs. asperities: height and diameter distributions
- Particle-level modeling: basic mechanisms
 - What part of pad participates in polishing?
 - What is nature of pad/particle/wafer interaction?
- Challenges for the CMP community
 - Have: effective chip-scale models for a *fixed* process useful in chip design and optimization
 - Need: fundamental mechanisms and models for varying process, pad, slurry, tool, and wafer materials and patterns – useful in process design and optimization, and in tool/consumable design and optimization

4 0 0 4 8 X (mm

December 16, 2010

Overall Physical Modeling Approach

- Pad-wafer interaction
- Pad-abrasive interaction
- Abrasive-wafer interaction

Pad-Wafer Interaction

- Assume "fully supported" asperities
- Asperity compression and asperity contact
- Can predict local asperity contact pressure

Plif

Have Physical Model... But Many Assumptions!

- Many of these assumptions have not been experimentally nailed down:
 - What part of pad participates in polish? Asperity height and size distributions? Mechanical properties of asperities?
 - What slurry particles participate? Large particles only? What particle/asperity loading occurs?
 - Effects of slurry chemistry, temperature, ...
- Alternative physical assumptions and models are possible and have been proposed
- If we can find the correct physics, then model can be used to predict results for different pads, slurries (e.g. particle sizes), pressures, velocities, etc., ...

Summary of **Pad-Wafer Interaction Model**

- Greenwood Williamson approach
 - Asperities have spherical surfaces with same radius
 - Elastic Hertzian contact
- Single asperity compression

- Exponential asperity height distribution $\xi(h) = \frac{1}{\lambda}e^{-\frac{h}{\lambda}}$
- Result: Predict contact area fraction f

$$f(P_0) = \frac{P_0}{E} \sqrt{\frac{\pi R}{\lambda}}$$

E: asperity reduced modulus P_0 : reference pressure

Boning and Fan, MRS Spring Meeting, April 2010.

- Contact area increases linearly with P₀
 - Depends on reduced pad modulus
 - Using shallow modulus average (stiffer asperities): smaller f% for same pressure
 - Using deep modulus average (asperities same as bulk): predicts larger f% for same pressure

Model Trend: Contact Area vs. Characteristic Asperity Height

- Contact area decreases with larger λ
 - Larger λ implies wider distribution (more taller asperities)
 - For wider distribution, a smaller number of tall asperities bear the load, reducing the contact area percent

Consistent with Conditioning/Contact Area Data

L. Borucki et al., CSITC, March 2010.

Example Polishing Pad Topography

L. Borucki et al., CSITC, March 2010.

50 μm

15 10 5

0 --5 --10 --15 --20 --25

 $P_0 = 5 psi$

 $P_0 = 10 \text{ psi}$

 $P_0 = 50 \text{ psi}$

December 16, 2010

 $P_0 = 150 \text{ psi}$

- Contact area changes with overall applied pressure
- There is also a *distribution* of asperity contact pressures: has implications for modeling

Model Parameters and Measured Results

- Model parameters
 - E and λ are single fixed values

$$f(P_0) = \frac{P_0}{E} \sqrt{\frac{\pi R}{\lambda}}$$

- Physical measurements
 - Depth dependence of E
 - Height range of extracted λ

- How to utilize the measure results in the model
 - Modify the model to include nonlinear effect?
 - Take the mean value of measured result in a certain range?

Plif

Conclusions

- Measurement approaches developed:
 - Pad slice indentation test
 - Asperity reduced modulus
 - Asperity height distribution
- Measurement observations:
 - See strong depth dependence of pad asperity modulus
 - Pad aging evaluation: surface properties remain consistent with conditioning
- Model for pad-wafer contact
 - Based on mechanical response of pad asperities
 - Contact area predictions and trends

Mir

Future Work

 Compare predicted and measured contact fractions

- Understand *distribution* of asperity size, heights, and mechanical properties
- Consider implications of shallow indentation modulus

Acknowledgements

- SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing
- Y. Zhuang, Y. Sampurno, and A. Philipossian at Department of Chemical and Environmental Engineering, Univ. of Arizona; Araca Inc.
- D. Hooper and M. Moinpour at Intel Corp.