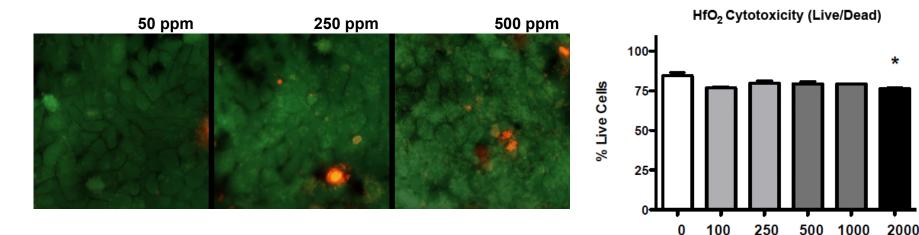
Measuring Nano-cytotoxicity Over Time: High Throughput Detection of Cell Death and Cellular Signaling Pathways"

SRC/SEMATECH TeleSeminar Series

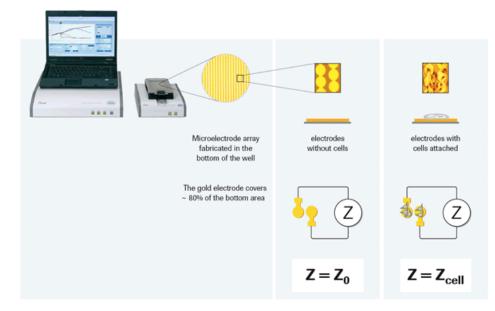

Scott Boitano, Ph.D. Mia McCorkel, M.S. Candidate University of Arizona

April 21, 2011

Examination of Nano-cytotoxicity of HfO₂: Live/Dead vs Real Time Cell Analysis

Fluorescent Assay:

- Grow Adherent Cells to Confluence
- Introduce Nanoparticle-supplemented Medium for 2 hr
- Evaluate with Fluorescent Dyes
 - Cell Permeant Green Dye (Calcein-AM) = Live Cells
 - Cell Impermeant Red Dye (Ethidium Homodimer) = Dead Cells


Limitations:

HfO₂ nanoparticle Dose (ppm)

- Single Time Point Response
- Tedious (not easily amenable to High Throughput Screening)

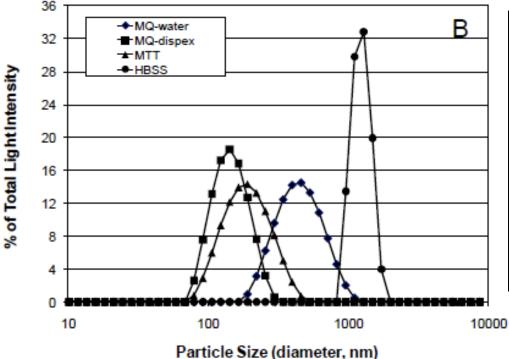
Examination of Nanocytotoxicity of HfO₂: Live/Dead vs Real Time Cell Analysis

Roche xCELLigence Real Time Cell Analysis (RTCA)



 Non-fluorescence-based assay that measured cell attachment to a membrane

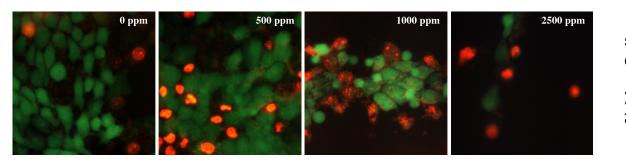
 Cytotoxicity can be monitored as a loss of attachment/reduced impedance

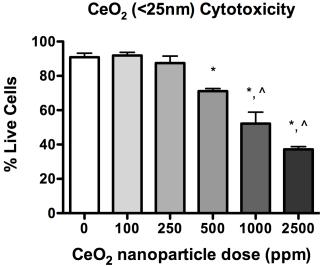

RTCA Experiment:

- Grow Cells to Confluence
- Wash with Nanoparticle-supplemented Medium
- Follow Exposure over time for 8 hrs or more

HfO₂ Particle Distribution in Assay Medium

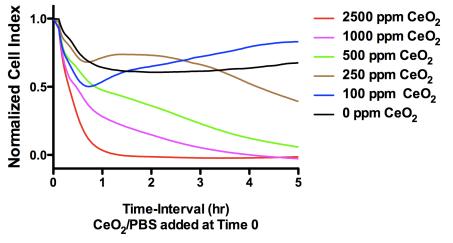
HfO₂ Particle size distribution (Batch 3) in different media at pH 7.2.



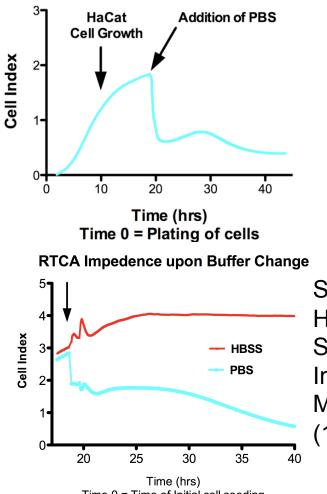

Medium	Average Particle Size
MilliQ Water	350 ± 12
MilliQ Water with Dispex	139 ± 2
MTT Assay Medium	284 ± 2
HBSS	3242 ± 270

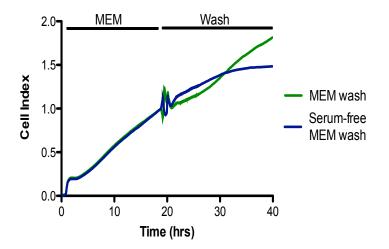
- Assay medium can greatly affect the particle size
- HBSS medium displays the greatest agglomeration
- Repeat RTCA experiments in PBS

CeO₂ Nanoparticle Cytotoxicity


Live/Dead Assay—2 hr in PBS

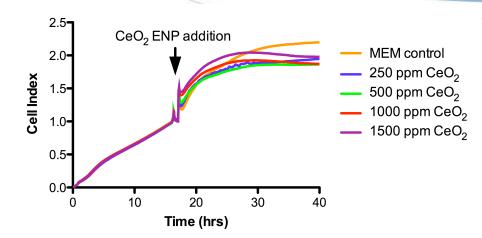
RTCA Impedence Assay--5 hr in PBS and Normalized

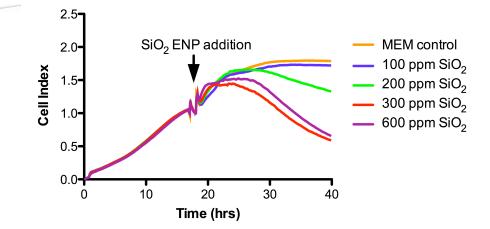

CeO₂ Cytotoxicity

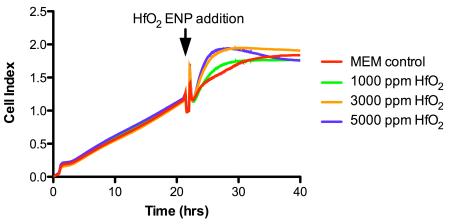

- CeO₂ displays more toxicity than HfO₂ in both assays
- Good Fit for data from two assays--clear shift in cytotoxicity at 500 ppm CeO₂
- Cells appear to recover impedance after 45 min and low dose CeO₂
- Extended incubations suggest 500 ppm CeO₂ is extremely cytotoxic
- Note loss of cells in Live/Dead (RTCA?)

PBS Contribution to RTCA Assay

PBS Induced Impedence Changes




Time 0 = Time of Initial cell seeding Addition of Buffer at Arrow Solution Exchange to PBS Results in a Large Impedance Change

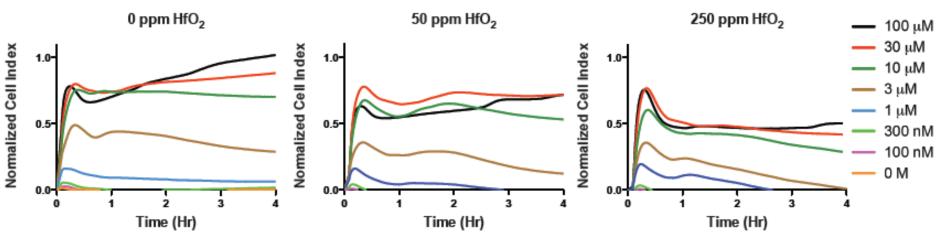


Solution Exchange to HBSS Does not Significantly Alter Impedance Measurements (16HBE14o- cells) Solution Exchange to MEM Does not Significantly Alter Impedance Measurements (16HBE14o- cells)

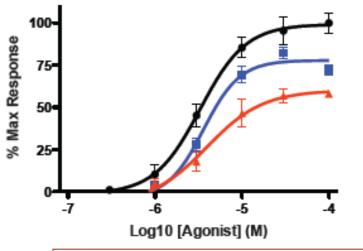
RTCA Experiments with 16HBE14o- cells and in Minimal Essential Medium

• CeO₂ and HfO₂ nanoparticles displayed no apparent toxicity to 16HBE14o- cells

• SiO₂ nanoparticles induced cytotoxicity at concentrations as low as 200 ppm (developing 10 hrs after application), with greater cytotoxicity at 300 and 600 ppm


• HfO₂ appears to induce an increase in impedance upon application -- indicative of a cellular response

Measuring Activation of Cellular Signaling Pathways with RTCA


- Measurement of Cell Death is the "Ultimate" End Point for Toxicity Experiments
- Many Toxic Effects can Occur in the Cell in the Absence of Cell Death
 - Cell Transformation e.g., Cancer
 - Loss of Ability to Respond to Cellular Signals or Stress
- Activation of Plasma Membrane Receptors in Adherent Cells can Initiate Cellular Signaling Pathways (e.g., Ca²⁺ signaling) that Alters Cell Spreading and Adhesion
- These changes can be measured with RTCA as distinct impedance changes
- We used the RTCA to evaluate low level Nanoparticle exposure on ATPinduced airway epithelial cell signaling
 - Loss/Reduction of ATP Signaling is Associated with Innate Immune Impairment and Chronic Lung Diseases

• We Evaluated whether 24-hr Exposure to Low Doses (i.e., sub-cytotoxic) of HfO₂ Nanoparticles could Alter ATP-induced signaling

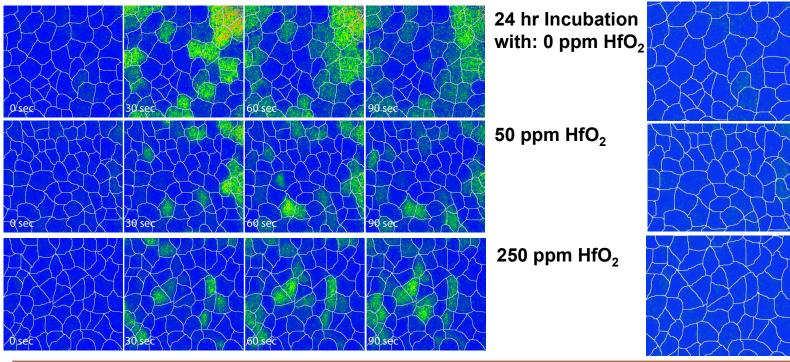
Nanoparticle Effects on Autocrine/Paracrine ATP-signaling in Airway Epithelium

Dose Response Curve

Conclusions:

- 24-hr incubation with HfO₂ inhibits ATP Response at "sub-cytotoxic" levels
- Loss of ATP Signaling is Indicative of Toxicity
- Alterations of Signaling Pathways can Contribute to Chronic Disease

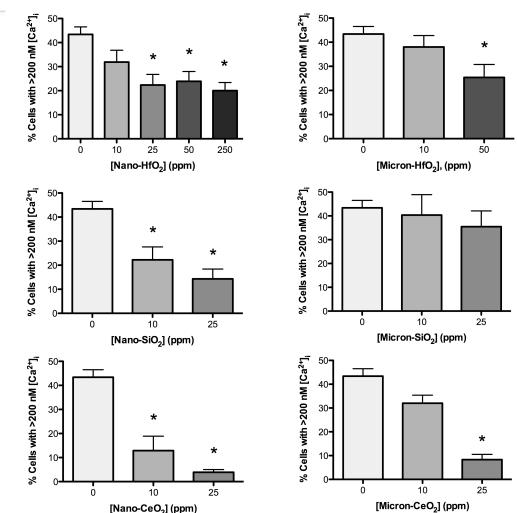
SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing


[ATP]

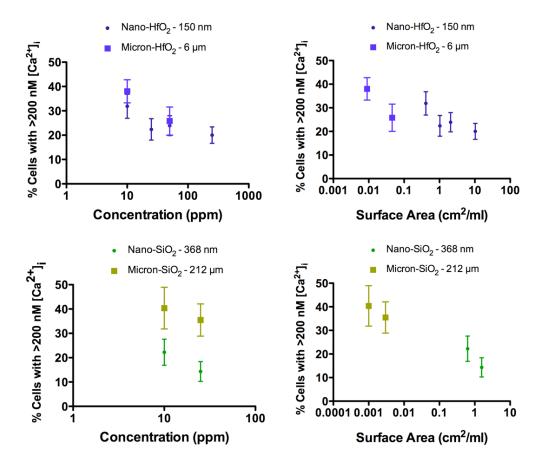
Digital Imaging Microscopy of ATP-Induced Second Messenger Signaling (Ca²⁺)

 One Signaling Pathway Downstream from ATP Activation is the increase in intracellular Ca²⁺ concentration ([Ca²⁺]_i)

 Cells were loaded with a Ca²⁺-sensitive dye (fura-2) and Mounted onto a Digital Imaging Microscope


• Cells Were Exposed to 1 μ M ATP (typical signaling concentration in airway epithelium) and assayed for [Ca²⁺]_i changes over 3 minutes

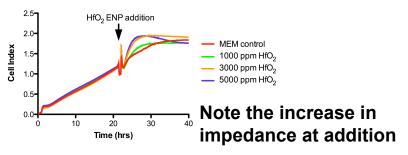
Nanoparticle Effects on ATP-induced Ca²⁺ Signaling


Experiments Evaluating Responses to 1 μ M ATP were Conducted with micron- and nano-sized HfO₂; SiO₂ and; CeO₂

- Nano-sized HfO₂ reduced the Ca²⁺ signal at lower concentrations than the micron-sized particles
- Only nano-sized SiO₂ reduced the Ca²⁺ signal in the concentration range tested
- Nano-sized CeO₂ reduced the Ca²⁺ signal the most among the nano-sized particles, but also had a significant impact in the micron range

Concentration vs Surface Area Ca²⁺ Response Relationships

- What is the Best Metric to Evaluate Toxicity?
- Recalculated Ca²⁺ toxicity using both Concentration and Surface Area


Conclusions:

• Both HfO₂ and SiO₂ toxicity (as measured by a reduction in Ca²⁺ Response) display a Logarithmic Relation to Surface Area

 Although Particles labeled as "Nano" when purchased, particle size peaks (noted in Legends) > 100 nm; further work is needed on "Nano" sized particles to observe if Surface Area Relationship holds

Next Steps/Discussion

- 1) MEM is a good medium for nanotoxicity studies
 - Relatively good dispersal
 - Relatively good impedance
 - Cell growth not compromised over many hours
 - Do supplemental amino acids provide a corona?
- 2) Do Nanoparticles Induce Signaling upon Exposure?

4) What Endpoints are Most Appropriate for Toxicology Studies? (not cell death)

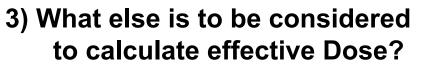
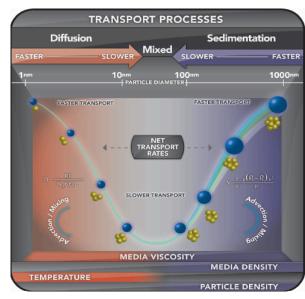



Figure from: Hinderliter, P.M., et. al. 2010. *Part Fibre Toxicol*. 7:36

Collaborations:

Semiconductor Research Corporation Grant Jim A. Field (PI) Reyes Sierra-Alvarez Lila Otero and Antonia Luna

> Farhang Shadman Buddy Ratner

Graduate Students in the Respiratory Cell Physiology Laboratory: Mia McCorkel (SRC Fellowship) Cara L. Sherwood