

Modeling of Environmentally Friendly Siloxane-Based Lithography Solvents

Gregory N. Toepperwein, Dan Rynearson, Juan J. de Pablo Christine Ouyang, Chris Ober

17 November 2011

Motivation

- Drive to reduce device dimensions has many obstacles remaining in its path.
 - Pattern collapse due to finite size effects and increased capillary forces during rinse
 - LER due to acid diffusion
 - Environmental concerns

Journal of Applied Physics (2004)

Stoykovich, Cao, Yoshimoto, Ocola, Nealey, Advanced Materials 15 1180 (2003) G.N. Toepperwein – Task 1674.004 2

scCO₂ as a Solvent

- No surface tension
 - reduced capillary forces => abates pattern collapse
- Plasticizes polymeric photoresist
 - reduced LER
- Requires additives to enhance resist solubility or new resists

Developed with TMAH, 122nm lines.

Developed with QAS/scCO₂, 42nm lines.

Wagner, DeYoung, Harbinson; SPIE Vol.6153 (2006) Zweber, Wagner, DeYoung, Carbonell; Langmuir (2009) Goldfarb, de Pablo, Nealey, Simons, Moreau, Angelopoulos (2000) Nov. 17, 2011 3

Objectives

- Environmental goals
- Methodology
- Super-critical carbon dioxide
 - Use with traditional photoresists
 - Use with molecular glass photoresists
- Linear methyl siloxanes
 - Benefits
 - Model development
 - Model validation
 - Use with traditional photoresists
 - Exploration of dissolution mechanism
- Future Work

ESH Metrics and Impact

- 1. Reduction in the use or replacement of ESH-problematic materials 100% reduction in the use of aqueous base TMAH developer
- 2. Reduction in emission of ESH-problematic material to environment Up to 100% reduction in VOCs and HAPs emission
- 3. Reduction in the use of natural resources (water and energy)
 - Eliminate water usage Reduction in energy for water treatment and purification

4. Reduction in the use of chemicals

Minimal use of organic solvents

Why a Non-Aqueous Developer Solvent?

- Environmentally friendly, zero VOC solvent
- Highly tunable solvating power
 - ρ(T,P)
 - Leaves no residue
 - Clean separations
- One-phase fluid
 - Zero surface tension
 - Transport, viscosity between that of liquid and gas
- Nonpolar, inert character

Potential to reduce LER and eliminate pattern collapse

Collaboration

Ober Group

Synthesize photoresistsDevelopment processProvide experimental results

Computer Simulations
Pre-screening of possible photoresist structures
Provide information on dissolution mechanism at a molecular level

de Pablo Group

Time (1ns-2ns between images)

$$-0.32 -0.32 -0.32 = 0$$

 $0 = C = 0$
 0.65

- OPLS force field employed for most parameters
- We calculated charges (q_i) using quantum mechanics

Film Energy Calculation

- Thin films of resist equilibrated in solvent via MD simulation
- Integrating the force on each chain as a function of position provide free energy

$$F(z) = \int_{z}^{z_{\infty}} \langle f(z') \rangle dz' + F(z_{o})$$

If the energy is lower at the surface than the center, the film is unstable

Sample Result: ESCAP Energy Curve

- Only addition of QAS4 to ESCAP results in reduced energy at surface of film (right of plot), indicating eventual dissolution
- Viability confirmed experimentally

0.0

T

譁

000

100

G.N. Toepperwein - Task 1674.004

- The –OH group of ESCAP associates with the anions.
- Contacts last >500 ps.

- Purple ESCAP
- Green Fluorine (QAS-4)
- Cyan Carbon (QAS-4)
- Red Oxygen (QAS-4)
- White Hydrogen (QAS-4)

Comprehensive Understanding

- Examined polymer resist dissolution enhancement for both PASS protected and unprotected resist
- Develop mechanistic understanding

Additive Principles for DMAA

DMAA Mechanism

- Additive was based on applying our understanding of QAS4 effectiveness on ESCAP
- DMAA demonstrates similar hydrogen bonding
- Ineffective with PHOST; obstructs terminal t-butyl group, instead exposing polar region, reducing scCO₂ solubility

Can develop nonfluorinated additives, but they are more resist-specific

Molecular Glass Photoresist

- Low molecular weight materials capable of forming solidlacksquarelike structures
- Improved LER •
- More soluble than larger chemicals lacksquare

Calixarene

Predictive Power of Simulations: Calixarene

- Molecular glass photoresist capable of high-resolution patterns (low LER)
- We demonstrated potential of this via simulation before experiment
- Capable of dissolution in scCO₂ without any additive (first material to show this property, shown below)

Time (1-2 ns between images)

Silcon-Based Solvents

- Linear methyl siloxanes
- Low molecular weight
- Contain only silicon, carbon, hydrogen, and oxygen
- Non-polar solvent
- Solvent power can be enhanced by adding additives
- Low in toxicity, VOC exempt
- Non-ozone depleting
- Degrade to naturally occurring compounds
- Low surface tension

Hexamethyldisiloxane

Octamethyltrisiloxane

Decamethyltetrasiloxane

Objectives

- Generate the definitive molecular model for siloxane solvents
 - Complete parameterization of all bonds, charges, etc.
 - Reproduction of experimentally-obtained chemical properties (density, heat of vaporization, etc.)
- Study behavior of traditional photoresists in siloxanes •

Hexamethyldisiloxane

Octamethyltrisiloxane

Decamethyltetrasiloxane

Model

- Chose functional form consistent with generic formalism to enable transferability
- Parameters derived from quantum mechanical calculation and experimental analysis
- Modeled six elementary building blocks from which an arbitrary structure can be created

Model Formalism: $V_{Total} = V_{LJ} + V_{Coul} + V_{Bond} + V_{Ang} + V_{Tors}$ Intermolecular Intramolecular $V_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \quad V_{Bond} = \frac{1}{2} k_{Bond} \left(r - r_{0} \right)^{2}$ $V_{Ang} = \frac{1}{2} k_{Ang} \left(\theta - \theta_{0} \right)^{2}$ $V_{Coul} = \frac{q_{i}q_{j}}{4\epsilon_{0}\epsilon r} \quad V_{Tors} = \sum_{n=0}^{5} c_{n} \cdot \cos(\phi)^{n}$

Sample elementary building blocks:

Quantum Mechanics

- Provides a detailed description of electron position as we probe different configurations
 - Can determine charges (q_i) directly
 - Map energy as a function torsion angle, etc.
 - rb3lyp model with 6-311+g(2d,p) basis set

НОМО

Potential Fitting – Torsional Sample

- Si-O-Si-C and Si-O-Si-O torsions most important parameters in determining shape of the solvents
- Torsional parameters fit to capture difference between quantum mechanical results and non-bonded interactions

Intermolecular Interactions

• Having built a complete intramolecular model from quantum mechanics, we now tune intermolecular many-body interactions to match experiment

Model Verification

	>si_o_si<		>si_o_si_o		>si_o_si_o	si_o_si
Hexamethyldisiloxane		Octamethyltrisiloxane		Decamethylt	etrasiloxane	
	HMD Siloxane		OMT Siloxane		DMT Siloxane	
	Experimental	Model	Experimental	Model	Experimental	Model
Heat of Vaporization (kcal/mol)	7.1	7.3	8.5	11.0	12.0	12.3
Specific Heat (cal/g*K)	0.46	0.50	0.29	0.48	0.41	0.53
Density (g/ml)	0.764	0.761	0.820	0.813	0.854	0.852
Dipole Moment (Debye)	Unknown	1.016	Unknown	1.203	Unknown	2.0553
Dielectric Constant	Unknown	1.339	Unknown	1.400	Unknown	1.875

• Good agreement with known properties

Energy Use

- Waste treatment is a major cost
 - Must separate solvent from dissolved polymer
- Siloxanes solvents require less heat to distill
 - Half the heat capactity
 - Order of magnitude lower heat of vaporization

Solvent	ТМАН	HMD Siloxane
C _p	3.2 - 4.18 J/g K	1.83 J/g K
T _{boil}	383K	373K
ΔH_{vap}	>2260 J/g	296 J/g

Calixarene

- Molecular glass resist
 - Inherently low LER
 - More soluble than polymers
- Selective dissolution proved by Ober group

	<u></u>	1.5
	<u></u>	1.3
		1.2
-	<u> </u>	1.1
		1.0
	*	.90
	<u>25</u>	:60
	-	50

HMD Siloxane Dose:350 mJ/cm² PEB:90°C, 30 sec G.N. Toepperwein – Task 1674.004

9.5 🗠
≥ 1.7
≥ 1.5
≥ 1.3
≥ 1.2
≕ 1.1
 ≕ 1.Θ

OMT Siloxane Dose:250 mJ/cm² PEB:90°C, 30 sec

DMT Siloxane Dose:300 mJ/cm² PEB:90°C, 30 sec

Calixarene Results

- Calixarene after 10ns in siloxane solvents:
 - Unexposed photoresist breaking away from surface
 - Exposed photoreist makes smooth interface
 - Negative tone resists
 - Excellent agreement with experiment

Calixarene Patterning

TOK photoresist DMTS: HMDSO=1:20 at 40°C for 40 minutes Resist film thickness ~350 nm

- ESCAP is our model EUV photoresist
 - Model previously developed and tested for scCO₂
- In experiment, chemically modified by NNDMTS:

59

O CH3

H₃C CH₃

59

ОН

Chemistry shown

independent of specific

siloxane solvent used

59

16

NNDMTS

O'

ESCAP resist

insoluble in silicone fluids

 H^+

UV

(N,N-Dimethyl)trimethyl silane

• Similarity between exposed and unexposed form makes ESCAP a serious test of model sensitivity

soluble in silicone fluids

H₃C-Si-CH₃

CH₃

- Model predicts only unexposed films to be unstable:
 - Negative Tone
- Results from experimental collaborator corroborate result

Solvent: DMTS/Decamethyltetrasiloxane e-beam dose = $20 \ \mu\text{C/cm}^2$ Photoresist:ESCAP Chemical modifier: NNDMTS Solvent: Decamethyltetrasiloxane Dose = $20 \ \mu\text{C/cm}^2$ PEB: 115 °C, 60 sec

PHOST Results

ESCAP in Solution

- What is the mechanism for ESCAP dissolution?
 - Need to understand structure of polymer in solvent and film
- Steered MD
 - Forces system to go through a range of configurations
 - Provides estimate of free energy
 - Use radius of gyration of polymer in solvent

Stretching Movie

Stretching Result Curve

- Exposed: prefers to extend modified region while coiling
 - HMD Siloxane is borderline poor solvent
- Unexposed: prefers extended form, has meta-stable coil
 - HMD Siloxane is a good solvent, but dissolution requires exposed film surface to have correct confirmation

Flux Tempered Meta-Dynamics

- Steered MD accuracy depends on pulling rate
 - Too time consuming to get high accuracy
 - Need to refine free energy estimate with different method
- Flux Tempered Meta Dynamics (in progress)
 - Use initial estimate obtained by Steered MD
 - Bias sampling to negate current free energy estimate
 - Measure time to sample all configurations during long simulation, estimate correction

Conclusion

- Alternative solvents are promising
 - Environmentally benign
 - Help abate pattern collapse
 - Generic solutions possible
- Molecular simulation aids development
 - Screen without synthesizing
 - Develop mechanistic understanding
- Siloxane Solvents
 - Non-toxic
 - Energy efficient
 - Effective
 - Still exploring mechanistic understanding

