<u>Reducing Ultra-High-Purity (UHP) Gas</u> <u>Consumption By Characterization of Trace</u> <u>Contaminant Kinetic and Transport Behavior</u> <u>in UHP Fab Environments</u>

Customized Project; Sponsored by Intel

Graduate Students':

- Roy Dittler: Ph.D. student, Chemical and Environmental Engineering, UA
- Hao Wang: Ph.D. student, Chemical and Environmental Engineering, UA
- J. K. Jhothirama: Ph.D. student, Chemical and Environmental Engineering, UA

<u>**PI:**</u>

• Farhang Shadman, Chemical and Environmental Engineering, UA

<u>Co-PI:</u>

Carl Geisert, Sr. Principal Engineer, Intel

1

Back Diffusion Sources and Mechanisms

Back Diffusion Sources and Mechanisms

Objectives

- Develop operational parameters that will minimize back diffusion of impurities into fluidic distribution systems.
- Develop and validate a process simulator that can help industry design and operate systems while minimizing back diffusion, gas usage, and system dead volumes.
- Develop a better understanding of back diffusion since little is known or has been published on the subject.

Motivation and ESH Impact

• Contamination of gas distribution systems during normal operation results in major wasting of materials, energy, and valuable tool operation time.

Experimental Testbed

Laterals Added to the Main Line

Multistage Gas Purifier System

Gas distribution systems with different sizes and geometries were fabricated and provided by Intel

Back Diffusion Process Simulator

Process Simulator Verification

Simulator Prediction

Experimental Results

Model Prediction

95 psia, lateral length of 0.6096 m

Effect of Flow Rate on Gas Phase Moisture

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 8

Effect of Lateral Length on Gas Phase Moisture

Effect of Lateral Diameter on Gas Phase Moisture

Effect of Reynolds Number on Gas Phase Moisture

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Effect of Peclet Number on Gas Phase Moisture

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing **12**

Effect of Peclet Number on Gas Phase Moisture

Back Diffusion Process Simulator: Orifice Addition

Convective Flux

$$J_c = -U_3 C_g$$

Gas Phase Dispersive Flux

$$J = -D\frac{dC_g}{dz}$$

Surface Diffusive Flux

$$J_s = -D_s \frac{dC_s}{dz} - D_s \frac{k_a}{k_d} \frac{dC_g}{dz}$$

Total Dispersive Mass Flow Rate $\pi r^2 I_e = \pi r^2 I + 2\pi r I_s$

Effective Dispersion Coefficient

$$D_e = D + \frac{2}{r} D_s K_e$$

Orifice Addition to Simulator

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 15

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 16

Surface: Concentration (mol/m³) ▲ 5.9951×10⁻⁹ ×10⁻¹⁰ Gas Phase Moisture Concentration, Cg (mol/m³) 50 40 **Peclet Number** 30 20 10 **Position in Main Header (meters)** ▼ 9.2775×10⁻¹³ 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3.15 3.2 3.25 3.3 3.35 3.4 3 3.05 3.1 2.6

Surface: Concentration (mol/m³)

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 25

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing 28

<u>Highlights</u>

- The experimental approach allowed for the observation of back diffusion in an adjustable and controllable manner.
- The process model accurately predicted experimental results and was invaluable in performing parametric studies.
- The moisture contamination due to back diffusion was a strong function of lateral diameter, length, and gas flow rate through the lateral.
- Characteristic groups were identified that allowed us to present generalized correlations that would help in the design and operation of UHP fluidic systems being exposed to a source of contamination
- This methodology was expanded to include an orifice and lateral in series and was effective in determining a design approach that will safeguard against the back diffusion of impurities into both bulk and process gases.
- The simulator showed flexibility in regards to being able to predict contaminant transport in systems with multiple sources of contamination as well as predicting the impact of such contamination on neighboring tools.

Industrial Interactions and Future Plans

- Continue our work with Intel on novel impurity control strategies to reduce gas usage
- Making the process simulator available to industry
- Extending the present study to other fluids, contaminants, and components

Acknowledgements

- Carl Geisert, Intel
- Tiger Optics support team