Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles

Task 425.023

Hao Wang

Chemical and Environmental Engineering University of Arizona

April 19th, 2012

PIs: Farhang Shadman Dept. Chemical & Environmental Engineering, University of Arizona.

Reyes Sierra Dept. Chemical & Environmental Engineering, University of Arizona.

Buddy Ratner University of Washington Engineered Biomaterials (UWEB) Center, University of Washington

ESH Testing and Evaluation of NPs

Surface Properties: capacity, affinity, and activation energy

Objectives and Method Approach

<u>Objective</u>: Characterization of the surface sites on nanoparticles that contribute to concentration, retention, and enhanced transport of toxic chemicals.

Method approach: Surface hydroxylation (adsorption and desorption

of contaminants).

Materials: SiO₂, HfO₂, and CeO₂. <u>Parameters</u>: Oxide type, particle size, temperature.

<u>Results</u>: Capacity and energetics of capture and retention of contaminants on active sites.

NPs	Supplier	APS* (reported by supplier) (nm)
CeO ₂	Sigma-Aldrich	20 & 50
SiO ₂	Sigma-Aldrich	20
SiO ₂	Nanostructured & Amorphous Materials	80
HfO ₂	Sematech	20
HfO ₂	American Elements	100

Schematic Diagram of the Experimental Setup

Heating Element Design

FTIR Spectra of Moisture Adsorption on NPs

Process Simulation: Single-Particle Domain

Adsorbent concentration in the gas phase:

7

Process Simulation: Packed-bed Domain

Adsorbent concentration in the gas phase:

Integral of absorbance peak over wavenumber:

$$A_{\text{int}} = \int_{\lambda_1}^{\lambda_2} A d\lambda = \frac{a}{r_0} \int_{\lambda_1}^{\lambda_2} a d\lambda \int_0^L \int_0^{r_0} C_{s_{in}}(r, x, t) dr dx.$$

Mechanism of Multilayer Model

Adsorption rate coefficients

$$k_a = k_{a_0} exp(\frac{-E_a}{RT})$$

Adsorption activation energies

1: Chemisorption

Desorption rate coefficients

$$k_d = k_{d_0} exp(\frac{-E_d}{RT})$$

Desorption activation energies

$$E_d = E_{d_1} \frac{C_{s_0} - C_s}{C_{s_0}} + E_{d_2} \frac{C_s}{C_{s_0}},$$

2: Physisorption

Numerical Method

Comparison of Adsorption Profiles of NPs (I)

Sample	Saturated surface concentration C _{S0} (gmol m ⁻²)	Fractional coverage θ (%)	l E _{a1} (kJ gmol ⁻¹)	Ea2 (kJ gmol ⁻¹)	Ed1 (kJ gmol ⁻¹)	E _{d2} (kJ gmol ⁻¹)
SiO ₂ (20 nm), 25°C	2.0×10 ⁻⁶	67	9.0	6.0	16.0	12.5
SiO ₂ (20 nm), 55°C	1.9×10 ⁻⁶	63	9.0	1.2	13.0	8.0
SiO ₂ (20 nm), 80°C	1.5×10-6	50	9.0	0.1	7.6	5.7
SiO ₂ (80 nm), 25°C	1.1×10-6	37	10.0	6.5	15.5	10.0
SiO ₂ (80 nm), 55°C	1.0×10-6	33	10.0	2.0	12.5	5.5
SiO ₂ (80 nm), 80°C	5.3×10 ⁻⁷	18	10.0	1.0	7.5	2.2

Comparison of Adsorption Profiles of NPs (II)

Sample	Saturated surface concentration C _{S0} (gmol m ⁻²)	Fractiona l coverage θ (%)	E _{a1} (kJ gmol ⁻¹)	E _{a2} (kJ gmol ⁻¹)	Ed1 (kJ gmol ⁻¹)	Ed2 (kJ gmol ⁻¹)
CeO ₂ (20 nm), 25°C	8.3×10 ⁻⁷	10.4	1.9	1.5	46	7.8
CeO ₂ (20 nm), 55°C	8.2×10-7	10.3	1.9	1.2	30	8.1
CeO ₂ (20 nm), 105°C	8.1×10 ⁻⁷	10.1	1.9	1.0	10	8.9
CeO ₂ (50 nm), 25°C	5.5×10 ⁻⁷	6.9	3.0	0.1	19	5.3
CeO ₂ (50 nm), 55°C	3.7×10-7	4.6	3.0	0.1	20	4.7
CeO ₂ (50 nm), 105°C	3.6×10 ⁻⁸	4.5	3.0	0.1	9	5.0

Comparison of Adsorption Profiles of NPs (III)

Sample	Saturated surface concentration C _{S0} (gmol m ⁻²)	Fractional coverage θ (%)	Ea1 (kJ gmol ⁻¹)	E _{a2} (kJ gmol ⁻¹)	Ed ₁ (kJ gmol ⁻¹)	Ed2 (kJ gmol ⁻¹)
HfO ₂ (20 nm), 25°C	2.2×10-6	55	5.0	0.5	17.0	0.4
HfO ₂ (20 nm), 55°C	1.5×10 ⁻⁶	38	5.0	2.8	23.5	0.7
HfO ₂ (20 nm), 80°C	8.1×10-7	20	5.0	4.8	22.0	0.016
HfO ₂ (100 nm), 25°C	4.4 ×10 ⁻⁷	11	12.5	10.5	16.5	4.6
HfO ₂ (100 nm), 55°C	3.3×10 ⁻⁷	8.3	12.5	11.0	16.0	3.7
HfO ₂ (100 nm), 80°C	3.1×10 ⁻⁷	7.8	12.5	12.0	11.0	2.6

Temperature Effect

Temperature Effect

Temperature Effect

Activation Energy of Surface Processes

- The surface retention characteristics depend on the particle size.
- Nanoparticles with smaller size will have larger density of surface sites and larger surface retention capacity. They also have higher affinity for retention of contaminants.

Size Effect on Energy of Surface Processes

Size Effect on Energy of Surface Processes

Size Effect on Energy of Surface Processes

Model Prediction on Desorption Time

Model Prediction on Desorption Time

Model Prediction on Desorption Time

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

24

Dimensionless Single NP Model

Dimensionless forms:

$$\bar{C}_{g_{in}} = \frac{C_{g_{in}}}{C_{g_{in,0}}}, \quad \bar{C}_{s_{in}} = \frac{C_{s_{in}}}{C_{s_{in,0}}}, \quad \bar{r} = \frac{r}{r_0}, \quad \bar{t} = \frac{t}{\frac{V}{A_0 k_a S_0}}, \quad \bar{k}_a = \frac{k_a}{k_{ac}}, \quad \bar{k}_d = \frac{k_d}{k_{dc}}$$

Dimensionless governing equations:

$$\begin{aligned} \frac{\partial \bar{C}_{g_{in}}}{\partial \bar{t}} &= \frac{D_{e_{in}}V}{r_0^2 A_0 k_{ac} S_0} \frac{1}{\bar{r}^2} \frac{\partial}{\partial \bar{r}} (\bar{r}^2 \frac{\partial \bar{C}_{g_{in}}}{\partial \bar{r}}) + \frac{C_{s_{in,0}} k_{dc}}{C_{g_{in,0}} k_{ac} S_0} \bar{C}_{s_{in}} \bar{k}_d - \bar{k}_a \bar{C}_{g_{in}} + \frac{C_{s_{in,0}}}{S_0} \bar{k}_a \bar{C}_{g_{in}} \bar{C}_{s_{in}} \\ & \frac{\partial \bar{C}_{s_{in}}}{\partial \bar{t}} = \frac{C_{g_{in,0}}V}{C_{s_{in,0}} A_0} \bar{k}_a \bar{C}_{g_{in}} - \frac{C_{g_{in,0}}V}{A_0 S_0} \bar{k}_a \bar{C}_{g_{in}} \bar{C}_{s_{in}} - \frac{k_{dc}V}{k_{ac} A_0 S_0} \bar{k}_d \bar{C}_{s_{in}} \end{aligned}$$

Dimensionless groups:

$$\alpha = \frac{D_{e_{in}}V}{r_0^2 A_0 k_{ac} S_0}, \qquad \beta = \frac{C_{S_{in,0}} k_{dc}}{C_{g_{in,0}} k_{ac} S_0}, \qquad \gamma = \frac{C_{S_{in,0}}}{S_0},$$
$$\eta = \frac{C_{g_{in,0}}V}{C_{S_{in,0}} A_0}, \qquad \theta = \frac{C_{g_{in,0}}V}{A_0 S_0}, \qquad \omega = \frac{k_{dc}V}{k_{ac} A_0 S_0},$$

Parametric Study

Parametric Study

Summary and Conclusions

Hydroxylation is a powerful method for characterization of capture and retention (adsorption/desorption) properties of NPs.

The surface retention characteristics depend on the material as well as on the particle size and temperature.

NPs with smaller size will have larger density of surface sites and larger surface retention. They also have higher affinity for retention of contaminants. Based on the size effect on energy, smaller NPs would have higher desorption activation energy and lower adsorption activation energy.

Purge under the higher temperature would benefit the desorption of moisture on the NP surface.

Future Work

Keep on studying the surface properties of other NPs Parametric study based on the dimensionless single NP model Upgrade the numerical model and increase the efficiency

Publications and Presentations

- Hao Wang, F. Shadman, Effect of Particle Size on the Adsorption and Desorption Properties of Oxide Nanoparticles, Submitted to AIChE, April, 2012
- Hao Wang, J. Yao, F. Shadman, Characterization of the Surface Properties of Nanoparticles Using Moisture Adsorption Dynamic Profiling, Chemical Engineering Science, June 2011
- Hao Wang, Characterization of the Surface Properties of Nanoparticles Using Moisture Adsorption Dynamic Profiling, SRC/SEMATECH Teleconference, July 2011 [PRESENTATION]
- Hao Wang, Physicochemical and Surface Characteristics Study of Nanoparticles related to ESH Impact of Emerging Nanoparticles and Byproduct in Semiconductor Manufacturing, SRC/SEMATECH Teleconference, November 2010 [PRESENTATION]

Acknowledgment

- SRC/SEMATECH Engineering Research Center
- Farhang Shadman, Professor of Chemical and Environmental Engineering, UA.
- Reyes Sierra, Professor of Chemical & Environmental Engineering, UA.
- Buddy Ratner, Professor of Bioengineering, UW.
- Junpin Yao, Matheson Tri-Gas Inc.