Use of Sonoluminescence and Sono-Electrochemistry Based Techniques for Fundamental Investigations of Acoustic Cavitation for Megasonic Cleaning Applications

Presenter: M. Keswani Students involved: Z. Han and S. Kumari PIs: S. Raghavan, P. Deymier, and F. Shadman

ERC Teleseminar

February 23, 2012

Background on Megasonic Cleaning

Megasonic Cleaning Process

 Sound waves with frequency of ~ 1 MHz or greater used in combination with different cleaning chemistries for particle removal

Courtesy of 'Institute of Sound and Vibration Research'

- •Advantage: High particle removal efficiency (PRE)
- •Disadvantage: Damage to fragile features

Effects of Acoustic Wave Propagation Through a Liquid

> Reduction in Liquid Boundary Layer Thickness on a Surface

>Acoustic Streaming: Eckart, Schlichting and Microstreaming

➤Acoustic Cavitation: Stable and Transient

Variables in Megasonic Cleaning

- Most commonly used control knobs in Megasonic Cleaning are Applied Power and Chemistry of Cleaning Solutions; frequency of sound field is attracting some attention recently
- Power density in single wafer cleaning tools is typically in the range of 0.5 - 3 W/cm²
- Generally, optimization of power density for cleaning based on the threshold power for onset of cavitation is not done
- Type and concentration of dissolved gases, temperature and additives such as surfactants to cleaning solution would affect the cavitation threshold

Measured using a Photomultplier Tube (PMT) and/or a spectrometer

Measured using a Hydrophone

Sonoluminescence (SL) from Cavitating Bubbles

- At collapse, the gas inside the cavity reaches extremely high temperatures (a few thousand degrees) and pressures (a few hundred bars).
- Results in production of free radical species \geq

Nature Reviews

Recombination of free radicals gives rise to photon emission.

SL from Water Saturated with different Dissolved Gases

Gas	Relative intensity *(Young 1976)	Thermal conductivity $(10^{-2} W m^{-1} K^{-1})$		
Air	1	2.52		
Nitrogen	0.51	2.52		
Oxygen	1.00	1.64		
Carbon dioxide	0.36	1.56		
Hydrogen	0.36	18-4		
Helium	0.48	14-3		
Neon	1.33	4.72		
Argon	12.5	1.73		
Krypton	21	0.94		
Xenon	52	0.55		

Relative SL intensities from water saturated with various dissolved gases.

* F. Young, J. Acoust. Soc. Am., vol 60, pp. 100-104 (1976)

Aqueous solution containing saturated level of gas was subjected to 20 KHz sound frequency at 10 W/cm² and SL was measured by a photomultiplier tube (165 to 650 nm)
In general , gases with Higher thermal conductivity showed lower SL

8

Recent Work at the University of Arizona

 Investigated the SL-behavior of major dissolved gases (N₂, O₂, Ar and CO₂) in a controlled manner in Aqueous Solutions

Component	Symbol	Volume		
Nitrogen	N_2	78.084%	00.00804	
Oxygen	O ₂	20.947%		
Argon	Ar	0.934%	99.990%	
Carbon Dioxide	CO ₂	0.033%		

Controlled SL by consumption/release of some of these gases using chemical means

CAVITATION THRESHOLD (CT) CELL

Experimental Setup

Gas Solubilities in DI Water

Saturating Gas Levels at 25 °C, 1 atm pressure

[Gas]	DIW Saturated With						
PPM	Air	N ₂	02	CO ₂	Ar		
N ₂	13.6	17.5	-	-	-		
02	8.4	-	44	-	-		
CO ₂	0.5	-	-	1500	-		
Ar	0.5	-	-	-	55		

> Ar, N₂, CO₂ were bubbled in DI Water until [O₂] < 0.3 ppm

> Air Saturated Water obtained by overnight exposure of DI water to clean

room air and confirmed by ensuring [O₂] > 8.2 ppm

SL in DI Water Saturated With Different Gases

- All gases except CO₂ (pH ~ 4, dissolved CO₂ ~ 1500 ppm) are capable of generating SL. CO₂ is completely incapable
- N₂ and O₂ saturated DI Water generates SL efficiently even though Ar, a gas believed to be essential for SL, is presumably absent

SL Suppression by Bubbling of CO₂

 $CO_2 > 60$ ppm suppresses SL almost completely. Addition of CO_2 decreases levels of other dissolved gases slightly. When Air-saturated DI Water is vaccum degassed to a comparable level, SL remains unaffected. Thus, SL suppression is due to added CO₂ and not due to removal of other gases upon addition of CO₂.

SL Suppression by CO₂ Released From NH₄HCO₃

These results show CO₂ to be not only incapable but also a strong inhibitor of SL generation.

* Neither HCl alone nor NH₄HCO₃ alone had any effect on SL, ruling out any role of HCO₃⁻ or H⁺ (pH)

➤ 3 mM HCl is added to induce release of CO₂ from NH₄HCO₃

 $ightarrow NH_4HCO_3 = 3 mM$ suppresses SL almost completely

> Initial dissolved gases is unchanged in this experiment as indicated by $[O_2] = 8.5$ ppm, thus SL suppression is due to CO_2 release

Calculation of CO₂ Evolved From NH₄HCO₃

> Upon acidification of NH_4HCO_3 , the linked equilibria in water is shifted towards formation of hydrated CO_2 i.e. CO_2 (*hyd*).

> Equations for equilibrium, mass and charge conservation can be solved numerically and $[CO_2(hyd)]$ and $[H^+]$ concentrations determined as a function of added $[NH_4HCO_3]$.

> Minimum $[CO_2 (hyd)]$ concentration necessary for Complete SL suppression using CO_2 release compounds is 140 ppm, which compares well with >60 ppm value obtained with direct CO_2 bubbling experiments

SL Generation Correlates With γ = Cp/Cv

SL is generated when the maximum temperature inside a bubble reaches a certain threshold value

> T_{max}, the Maximum temperature reached in an acoustic cavity depends on y and is given by

$$T_{\max} = T_0 \left[\frac{(P_0 + P_A)(\gamma - 1)}{Q} \right]$$
$$\frac{T_{\max}}{(P_0 + P_A)/Q} = T_0(\gamma - 1)$$

220 Calculated T_{max} / [(P₀+P_A)/Q] Ar 200 180 160 140 £ Air, N_2 , O_2 120 100 CO. 80 60 1.3 1.2 1.4 1.5 1.6 1.7 Polytropic Index (γ)

 $T_{\text{max}} = \text{Max}$ Temperature, Q = Initial Pressure in the Bubble,

 T_0 = Initial Temperature, γ = Polytropic Index

 P_A = Acoustic Pressure Amplitude,

Suslick and Co-workers (*J. Phys. Chem. A 1999*) have reported $T_{max} = 4000 \text{ deg C}$ for Argon saturated water-benzene mixtures, which can be reproduced from the plot above using $(P_0+P_A)/Q$ = 21.4 and γ = 1.67 for Argon.

Plausible Mechanisms For Reduction Of SL Signal By Carbon Dioxide

- 1. The maximum temperature reached in a carbon dioxide bubble is lowest because of its low γ value.
- 2. Scavenging of free radicals by CO₂ may contribute to the reduction of SL signal (It is a common practice to bubble CO₂ in ozonated DI water to kill free radicals and extend ozone half life)
- **3.** Cushioning effect from dissolved CO₂ due to its higher solubility compared to other gases

Cavitation Studies Using Electrochemical Measurements

Cavitation Studies Using Electrochemical Measurements

> Increased interest over the past two decades in ultrasonic cavitation studies using microelectrode based electrochemical measurements

> Microelectrode allows monitoring of single bubble activity through cavitation effects of the bubble

Much of the available literature correlating cleaning additives (surfactants, dissolved gases etc) and bubble behavior is in the ultrasonic frequency range

➢ Since, the semiconductor industry, uses megasonic range frequencies for cleaning applications (due to lower damage to structures at these frequencies), current work was focused on investigating bubble behavior at ~ 1 MHz

Concept

Electrochemistry in Sound Field to Characterize Bubble Behavior

> When an electroactive species such as ferricyanide gets reduced at an electrode surface (such as platinum), current is generated

 $Fe(CN)_6^{3-}$ + $e^- \rightarrow Fe(CN)_6^{4-}$

Different bubble behaviors such as oscillation and collapse can lead to mass transport of the ferricyanide species towards the electrode surface

By measuring current at high sampling rates (in MHz range), bubble behavior can be monitored using a microelectrode

Experimental Set-up

Cyclic Voltammetry in Ar saturated DI water containing 50 mM K₃Fe(CN)₆ and 0.1 M KCl solution

Limiting current increases with application of megasonic field
Appearance of current transients on limiting current in the presence of meg field

Examples of Current Peaks

Conditions: Ar saturated Aq. Solution of 50 mM K₃Fe(CN)₆ & 0.1 M KCl, Megasonic conditions: Continuous mode, 2 W/cm²

Effect of dissolved gases (CO₂, N₂ and Ar) in 50 mM K₃Fe(CN)₆ and 0.1 M KCl solution on current voltage behavior

*Current transients strongly depend on the nature of the dissolved gas

* Number and magnitude of current peaks were observed to decrease in the following order for dissolved gases: argon > nitrogen > carbon dioxide

Frequency of occurrence of transient cavitation as a function of power density for various dissolved gases

* In the case of Ar saturated ferricyanide solution, the frequency of occurrence of 'current peaks' increases from 6 to 65 in 10 s with increase in power density from 0.4 to 2W/cm²

* The number of 'current peaks' at $2W/cm^2$ reduces to 35 and 5 (in 10 s) when the experimental solution contained saturated levels of N₂ and CO₂, respectively

Role of Triton[®] X-100 on current during reduction of ferricyanide ions (50 mM) in Ar saturated aqueous solution

(Continuous mode; 0-6 s = no applied potential and no megasonic irradiation, 6-11 s = applied potential of -0.6 V and no megasonic irradiation, 12-32 s = applied potential of -0.6 V and megasonic irradiation at ~ 1 MHz, \geq 33 s = applied potential of -0.6 V and no megasonic irradiation)

Time (sec)

Amplitude and frequency of occurrence of transient cavitation peaks depends on the concentration of Triton[®] X-100 in the solution

Summary

*****Sonoluminescence and Sono-electrochemistry based techniques can be very useful in probing acoustic cavitation

***** Dissolved gases and additives such as surfactants play an important role in modulating transient cavitation which affects both particle removal and feature damage

ACKNOWLEDGEMENTS

- Intel (Gopal Rao, Avi Fuerst) and National Science Foundation for supporting the work
- ProSys (Mark Beck, Eric Liebscher) for donation of the CT cell

