

Pluronics and CNTs: Modeling and Toxicity

SRC-ERC Teleseminar Series, July 26th 2012

Part I

Computer Modeling of Pluronic:CNT Composites **R. J. K. Udayana Ranatunga**

Part II

Sonication of Pluronic Polymers Induces Toxic Degradation Products Ruhung Wang

The University of Texas at Dallas BioNanosciences Group

Dispersion, Bioaccumulation, and Mechanisms of Nanoparticle Toxicity

Nanoparticle(NP) Material: Varying shapes and surface chemistries

Spherical C₆₀

Faceted Ceria

Planar Graphene Oxide

Cylindrical MWCNTs

Focuses

- 1. Dispersant mechanism / effectiveness
- 2. Correlation of NP aggregation state and toxicity
- 3. Tracking cellular uptake and concentration of NPs

Modeling

Biological Testing

The Bundling of Nanotubes

Carbon nanotubes (CNTs) aggregate in water

- Hinders processing, controlled assembly
- Aggregation implicated in toxicity

Dispersion of CNT with Pluronic Polymer

- Dispersing agents promote separation of particle aggregates / clumps
 - Improve processability, handling of material
 - Aid in nanomaterial remediation
- Pluronics are an amphiphilic tri-block copolymer which can be used as a nanotube dispersant

Modeling Pluronics

- Interested in modeling Pluronic:CNT composites
- Existing Pluronic models
 - All atom representation
 - Too detailed!
 - Cannot simulate adequate sizes
- Need to create a coarse grained (CG) model
 - All atom simulations used to set bonded interactions
 - Experiment data (density, surface energies) used to tune non-bonded interactions

Bonded Parameters

Bonded parameters

- Dictate the vibrations and flexibility of a molecule

Parametrization strategy

- Carry out all atom simulations to obtain target data for CG model
- Iteratively tune CG model parameters to arrive at target data

All atom simulation

Bonded Parameters

Non-bonded Parameters

- Density depends mostly on σ
- Surface tension depends mostly on ϵ

Surface Tension

Pluronics in Water

Focus on three specific Pluronics,

 Hydrophobic length remains constant, hydrophilic length increases: L62, P65, F68

Pluronic:Nanotube in Water

Interaction of CNT:PLN with Lipid Bilayer

- Insertion of CNTs into lipid bilayers → biological implications
- Bare nanotube spontaneously enters lipid bilayer
- Most Pluronic coated CNTs require external force
- Qualitatively, F68 > P65 > L62 in raising insertion energy barrier

Simulating Pluronic:MWCNTs

- Explicitly include free energy terms involved in formation of Pluronic: MWNT composite structures

Conclusions from Simulation Studies

- Successfully constructed a coarse grained model of Pluronics
- Pluronics with higher % hydrophilic mass are suitable for dispersing carbon nanotubes
 - Larger corona \rightarrow barrier towards aggregation
 - Higher barrier towards membrane insertion
- Simulating experimentally relevant Pluronicfunctionalized MWNTs leads to the development of new computational methodology

Pluronics and CNTs: Modeling and Toxicity SRC-ERC Teleseminar Series, July 26th 2012

Part I

Computer Modeling of Pluronic:CNT Composites **R. J. K. Udayana Ranatunga**

Part II

Sonication of Pluronic Polymers Induces Toxic Degradation Products Ruhung Wang

Pluronic® F-68 Bath Sonication (min)

Generation of Toxic Degradation Products by Sonication of Pluronic[®] Dispersants: Implications for Nanotoxicity Testing

RUHUNG WANG^{1,2}, TYLER HUGHES¹, SIMON BECK¹, SAMEE VAKIL¹, SYNYOUNG LI¹, PAUL PANTANO², AND ROCKFORD K. DRAPER^{1,2,*}

¹Department of Molecular & Cell Biology and ²Department of Chemistry, The University of Texas at Dallas, Richardson, TX 75080

MWNTs and Bio-compatible Dispersants MWNTs

- Three dispersants
 BSA : 67 kDa protein
 (8 nm x 8 nm x 8 nm) x 4 nm
 - F-68 : 8.4 kDa tri-block copolymer (EO)₇₇(PO)₂₉(EO)₇₇

F-127 : 12.6 kDa tri-block copolymer (EO)₁₀₁(PO)₅₆(EO)₁₀₁

Effectiveness of F-68, F-127, or BSA in dispersing MWNTs using bath sonication at 37 kHz and 120 W.

▶ Pluronic[®] F-68 and F-127 are better dispersants than BSA for MWNTs.

Cytotoxicity of MWNTs suspended in F-68, F-127, or BSA as a function of bath sonication time.

- MWNT-F-68 and MWNT-F-127 suspensions become toxic after sonication.
- > MWNT-BSA suspensions are not toxic to NRK cells.

Cytotoxicity of F-68, F-127, and BSA as a function of bath sonication time in the absence of MWNTs.

Pluronic[®] F-68 and F-127 solutions become highly toxic after sonication

BSA solutions are not toxic.

Morphology of NRK cells after 12 h exposure to non-sonicated or sonicated F-68.

Non-sonicated F-68 (0.1 mM) 4 h-sonicated F-68 (0.1 mM)

- Cell death was apparent after 12 h exposure to sonicated F-68.
- No morphological changes were observed in cells exposed to non-sonicated F-68.

IC₅₀ of sonicated F-68 and F-127 for NRK cells after 24 h exposure.

Pluronic®	F-68		F-127	
Sonication Time (h)	1	4	1	4
IC ₅₀ (μM)	53.2	16.5	18.3	6.9

The longer the sonication time, the more toxic the Pluronic polymers become.

* IC_{50} : The half maximal inhibitory concentration

Sonication induces degradation in F-68 and F-127

Sonication is known to degrade various polymers

- ✤ Sonication → cavitation bubbles
 → heat, pressure, and shear forces
- Sonication → H₂O₂ → free radical attacks

Many degradation products of polymers are toxic to cells

- free radicals
- reactive oxygen species (ROS)
- organic acids
- alcohols
- aldehydes

Does sonication induce polymer degradation?

Monitor changes in polymer size as a function of sonication time by

- Dynamic Light Scattering (DLS)
- SDS-PAGE

Degradation of F-68 as a function of bath sonication time at 37 kHz and 120 W.

- Degradation of F-68 polymers were detected in Bal₂ stained SDS-PAGE gels as a function of sonication time.
- Similar results were found in F127.
- Established the correlation between polymer degradation and toxicity; both are sonication dependent.

Removing toxic degradation products in MWNT-F-68 and MWNT-F-127 suspensions by dialysis.

Effects of dialysis on the removal of toxic degradation products in MWNT-F-68 suspensions.

- Degradation products of F-68 and F-127 polymers in MWNT suspensions were removed by dialysis.
- MWNTs remained in high concentrations and stable in suspension after dialysis against intact non-sonicated F-68 or F-127.

Conclusions from MWNT-Pluronic Suspension Toxicity Studies

- Pluronic[®] tri-block copolymers F-68 and F-127 are better dispersants compared to BSA in suspending MWNTs in biocompatible solutions.
- F-68 and F-127 become highly toxic after sonication in the presence or absence of MWNTs; polymer toxicity correlate with degradation, both are sonication time dependent.
- Caution should be used in interpreting the results of nanotoxicity studies where the sonolytic degradation of dispersants has not been controlled.
- Dialyzing MWNT-F-68 or MWNT-F-127 suspensions against nonsonicated F-68 or F-127 replaced the degraded materials and eliminated toxicity while retaining the MWNTs in suspension at high concentration.

