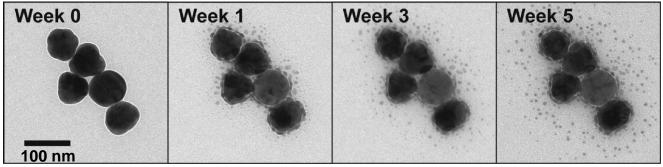


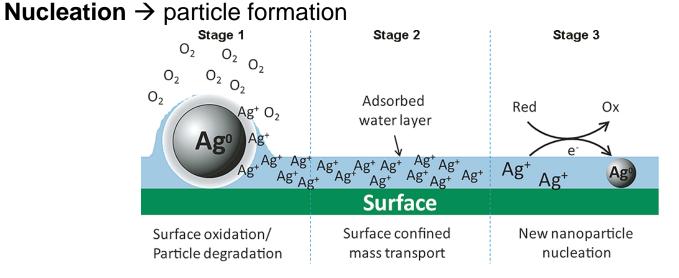
Integrative Nanotoxicology: Linking Rapid Assays and Informatics to Predict Nanomaterial –Biological Interactions

Stacey Lynn Harper, Ph.D. Environmental and Molecular Toxicology Chemical, Biological and Environmental Engineering

Nanomaterial-Biological Interactions

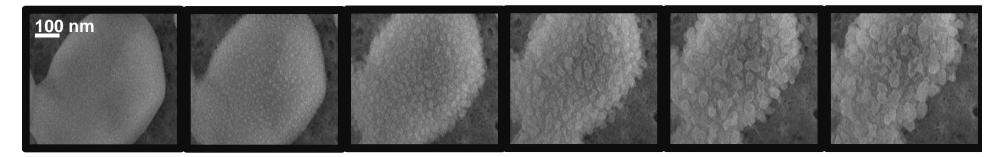

"Structure"-"Activity" Relationships

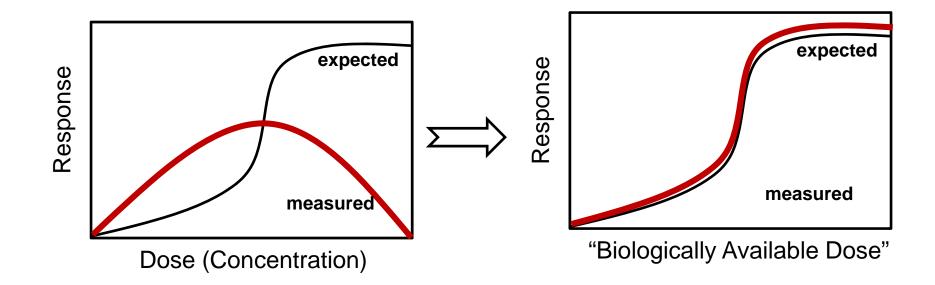
- The holy grail for nanomaterials
- Structure = inherent properties
- Activity = conditional behavior


Challenges in Measuring Biological Responses to Nanomaterial Exposure

Nanomaterial Stability

Dissolution \rightarrow particles + ionic species


Glover et al., ACSNano, 2011



Challenges in Measuring Biological Responses to Nanomaterial Exposure

Nanomaterial Stability

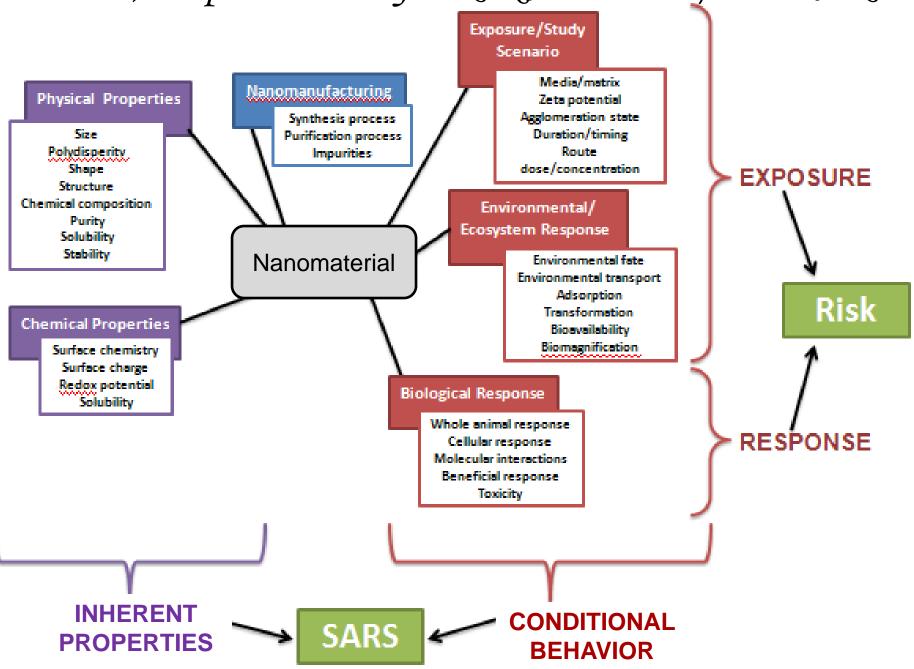
Agglomeration - "Biologically Available Dose?"

nanomaterial-obiological interactions

Challenges in Measuring Biological Responses to Nanomaterial Exposure

Influence of Exposure Scenario

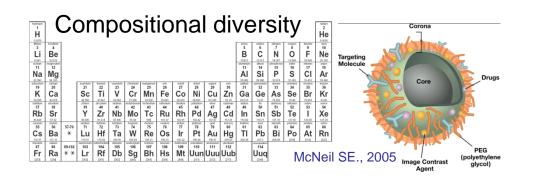
- Sample preparation sonication, vortex, solution
- Experimentation design timing, duration, organism
- Transformation during exposure
 - Nanomaterials are dynamic "conditional behavior"
 - Solution vs. dispersion *not in equilibrium*

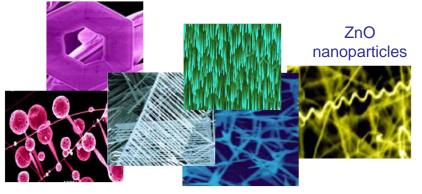

Challenges in Measuring Biological Responses to Nanomaterial Exposure

ADME – Tox Limits for Nanomaterials

- Complex matrixes make finding nanomaterials difficult limits of instrumentation
- Exposure \rightarrow dose unknown
 - ICP-MS, fluorescent labeling limits
- Biodistribution
 - Fluorescence
 - Microinjection

Nanomaterial Interference

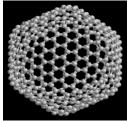

• Optical analysis limited for some nanomaterials


Diverse, Disparate Data for Risk Assessment/ nanoSARs

Need for Rapid Assays

Nanomaterial Diversity

Synthesis process influences nanoparticle shape

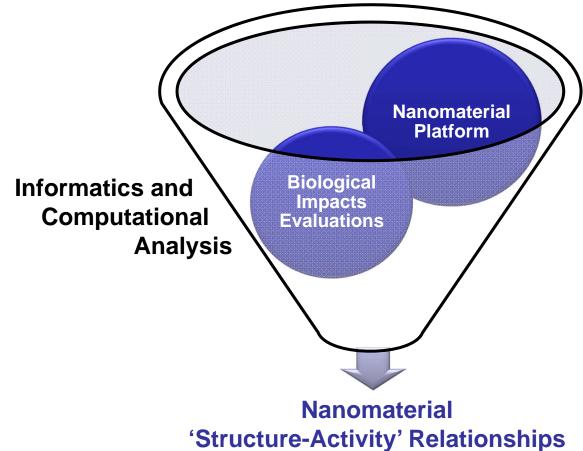


Nanomaterial Complexity

Relative importance of nanomaterial characteristics are unknown

Physicochemical properties Chemical Structure Core Particle Composition Size Shape

Charge Surface Chemistry Surface Area Agglomeration State Zeta Potential



http://www.vincentherr.co m/cf/nanomain.html

Small changes in nanomaterial can alter conditional behaviors of nanomaterials (performance, exposure, hazard)

Toward Establishing SARs

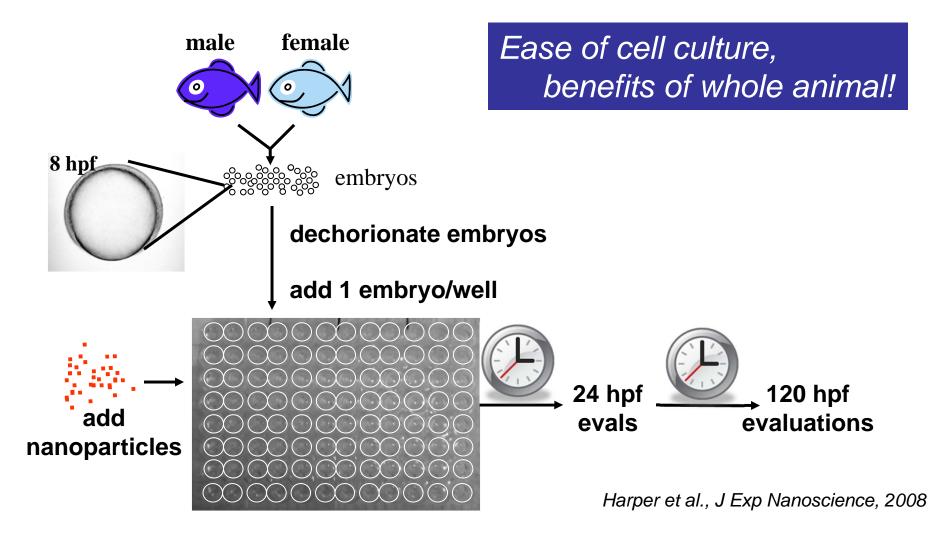
H_o: A select set of inherent nanomaterial features can be used to predict their environmental behavior and biological impacts (conditional behavior).

Embryonic Zebrafish Assay

In vivo system to rapidly screen for biological impacts

General Attributes

Share molecular, cellular and physiological characteristics with other

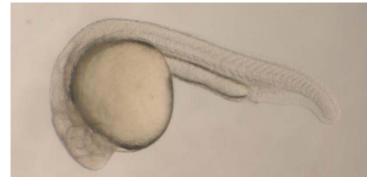

vertebrates Develop rapidly Easy to maintain

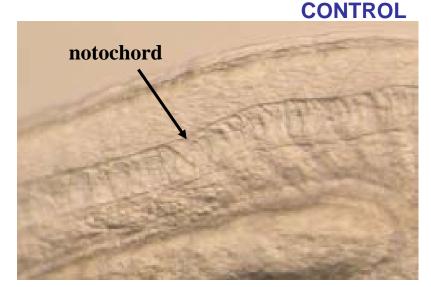
Toxicity Evaluation

Large sample sizes Many routes of exposure Transparent - non-invasive evaluations Amenable to mechanistic evaluations Investigate genomic \rightarrow whole animal responses in same organism Full suite of molecular signaling necessary and active early in development

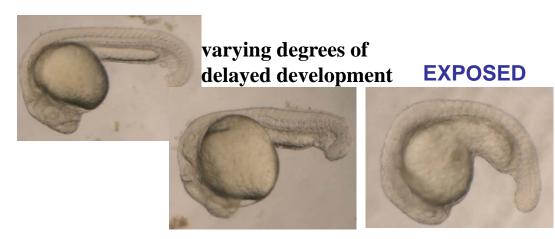
Embryonic Zebrafish Assay

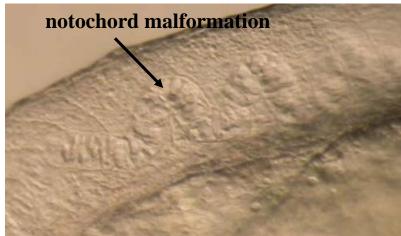
Experimental Design



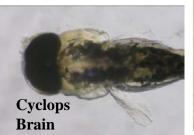

Embryonic Zebrafish Assay

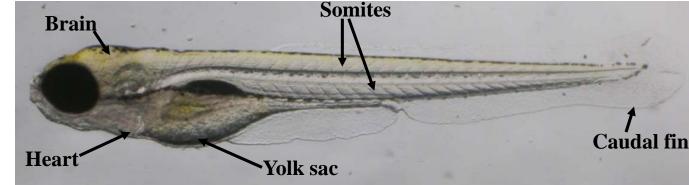
24 hpf evaluations


Mortality (**mort**) Developmental progression (**dp**) Spontaneous movement (**sm**) Notochord (**nc**)


CONTROL

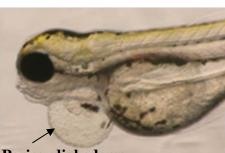
EXPOSED





Embryonic Zebrafish Assay

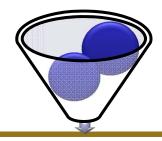
120 hpf evaluations


Mortality (mort) Yolk sac edema (YSE) Body axis (axis) Eye Snout Jaw Otic vessicle (**otic**) Pericardial edema (PE) Brain **Somites** Pectoral fin (pfin) Caudal fin (cfin) Pigmentation (pig) Circulation (circ) Trunk Swim bladder (swim) Motility (touch response, tr)

CONTROL

Pericardial edema

8

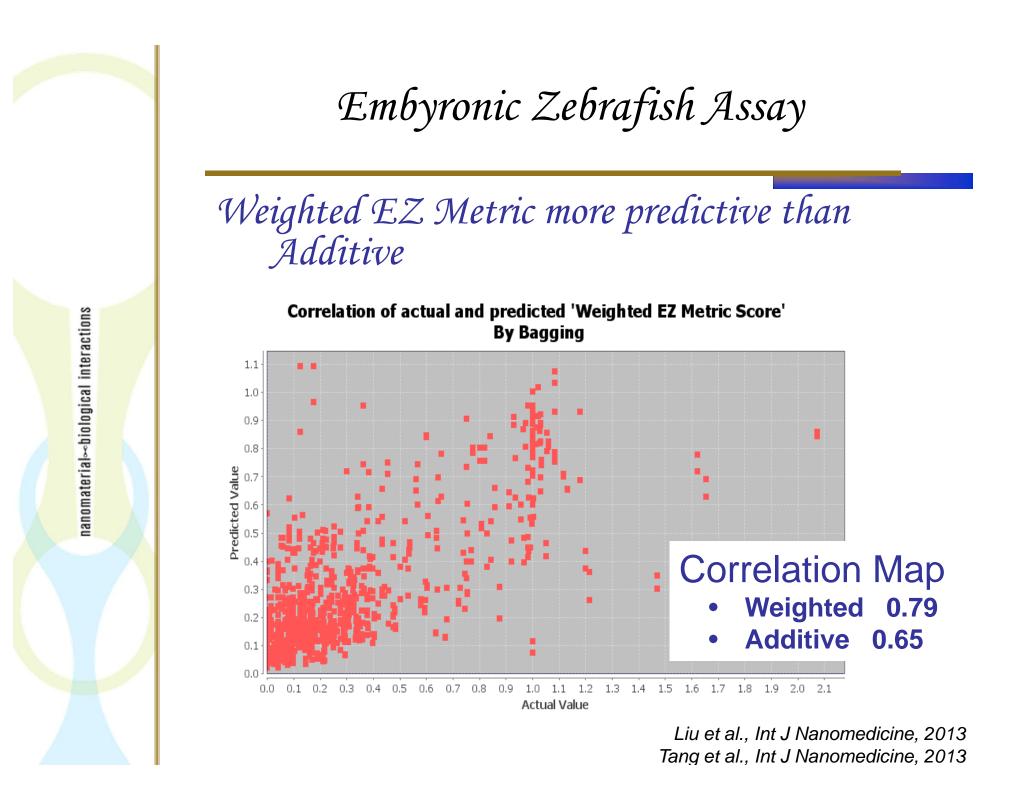


Informatics and Computational Analysis

EZ Metric (embryonic zebrafish metric) A single metric representative of lethal and sublethal impacts on embryonic zebrafish in a screening-level assay

- Combines 21 endpoints of morbidity and mortality
- Additive EZ Metric
 - Sum of all effects independent of impact
 - *e.g.*, eye malformation = mortality

Concentrations	Weighted	Additive
(ppm)	EZ Metric	EZ Metric
0.00	0.04	0.04
0.02	0.00	0.00
0.08	0.00	0.00
0.40	0.08	0.17
2	0.21	0.38
10	0.34	0.54
50	0.78	1.46
250	1.00	1.00


Informatics and Computational Analysis

EZ Metric

A single metric representative of lethal and sublethal impacts on embryonic zebrafish in a screening-level assay

- Combines 23 endpoints
- Additive EZ Metric
- Weighted EZ Metric
 - Weighted metric based on hierarchical / ranking of effects
 - Takes into account embryo survivability
 - Calculations:
 - frequency of effect
 - x hierarchical ranking weighted EZ Metric

	Ranking	Effect
	1	Mortality – 24 hpf
1	0.08	Notochord Malformation
		Developmental Progression
	0.06	(delayed development)
/	0.04	Spontaneous Movement
/	0.95	Mortality – 120 hpf
	0.12	Heart Malformation
	0.12	Brain Malformation
	0.10	Yolk Sac Edema
	0.08	Axis Malformation
	0.06	Trunk Malformation
	0.04	Eye Malformation
	0.04	Jaw Malformation
	0.04	Circulation
	0.02	Snout Malformation
	0.02	Otic Malformation
	0.02	Somite Malformation
	0.02	Pectoral Fin Malformation
	0.02	Caudal Fin Malformation
	0.02	Pigmentation
	0.02	Swim Bladder
	0.02	Touch Response

Nanomaterial-Biological Interactions Knowledgebase

Welcome to the Nanomaterial-Biological Interactions Knowledgebase!

The NBI Knowledgebase is intended to offer industry, academia, the general public, and regulatory agencies a mechanism to rationally inquire for unbiased interpretation of nanomaterial exposure effects in biological systems.

The knowledgebase serves as a repository for annotated data on nanomaterial characterization (*purity, size, shape, charge, composition, functionalization, agglomeration state*), synthesis methods, and nanomaterial-biological interactions (*beneficial, beneficial, benef*

Biological Interactions Database

Biological Interactions Database

http://nbi.oregonstate.edu/

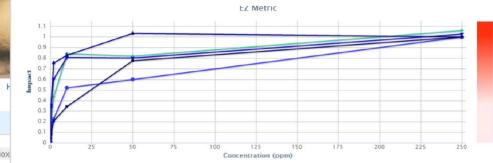
Material Type:	Core:		Surface Chemistry:	
All	All		All	
carbon	1,4-diaminobutane [DA	.B] (≡)	2,2,2-[mercaptoeth	(E)
dendrimer	aluminum oxide [Al2O3	3]	2-(2-mercaptoethox	
metal	cadmium selenide		2,3-dimercaptoprop	
metal oxide	+ cellulose	-	2-mercaptoethanesu	-
	Charge:			
Shape: All	Charge:		Dendrimer Generation:	
	All	<u>^</u>	Dendrimer Generation: All	•
All	All	* III		(E)
All conical cubic cylindrical	All		All	
All conical cubic	All		All GX	

Submit Search Filter Search New Search

Link to material record

Link to experimental data

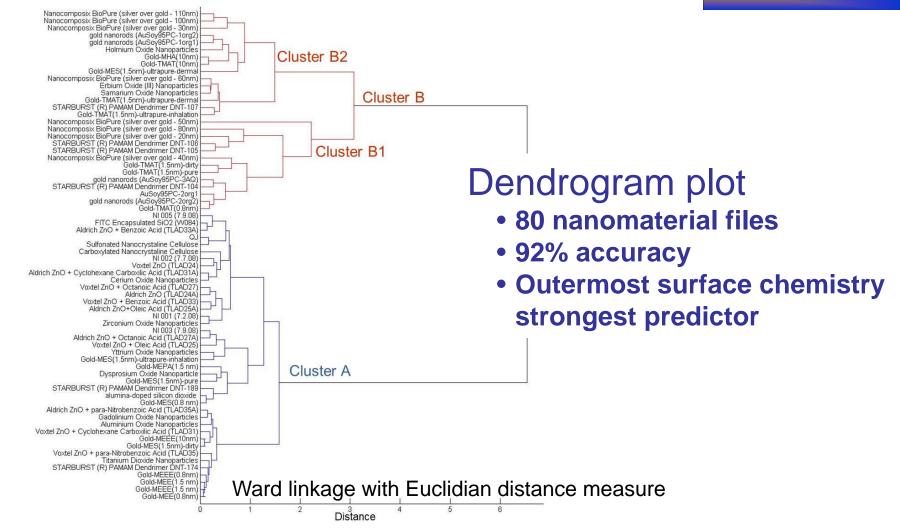
	Nanomaterial									EZ	Z Metr	ric			
ID 2	Family	Core	Surface Chemistry	Shape	Size	Charge				Co	ncentrat	ion			
nbi_0010	metal	gold [Au]	2-mercaptoethanesu	spherical	1.5	-	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 p.m	Data
			Average Values				0.00	0.00	0.00	0.07	0.08	0.05	0.00	0.08	View
nbi_0004	metal	gold [Au]	2-(2-mercaptoethox	spherical	0.8	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.00	0.04	0.02	0.04	0.04	0.09	0.15	View
nbi_0007	metal	gold [Au]	N,N,N-trimethylamm	spherical	1.5	+	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.03	0.13	0.36	0.74	0.77	0.98	1.03	1.00	View
nbi_0013	metal	gold [Au]	6-mercaptohexanoic	spherical	10	-	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.08	0.02	0.10	0.04	0.13	0.57	0.99	View
nbi_0012	metal	gold [Au]	N,N,N-trimethylamm	spherical	10	+	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.00	0.00	0.00	0.04	0.08	0.65	0.93	View


Material Record

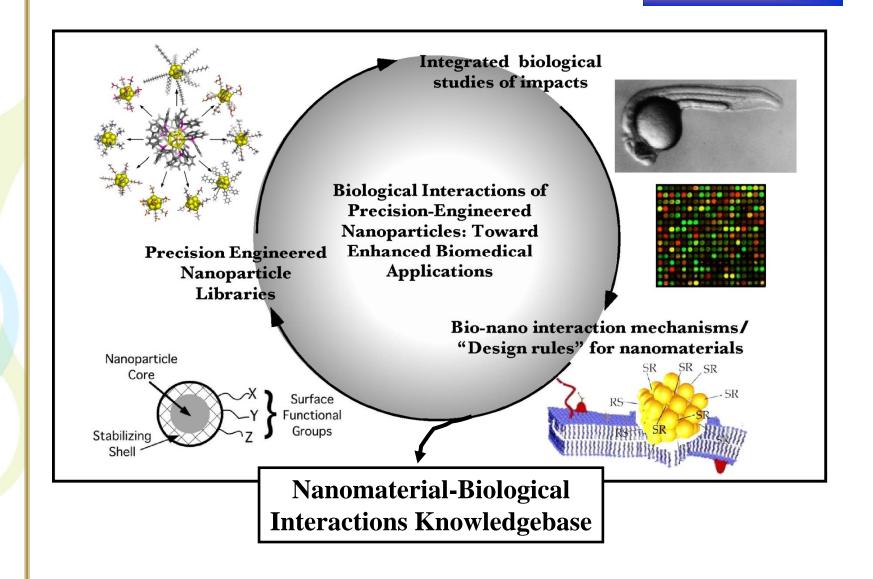
Experimental Data

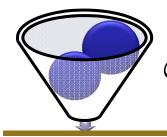
NBI Knowledgebase

Field	Value	0.3	/	
NBI Material Identifier	44	0.1		25
Particle Descriptor	alumina-doped silicon diox	0	4	25
Investigator / Material Data Contributor: Name	Stacey Harper			
Investigator / Material Data Contributor: Affiliation	Oregon State University			
Investigator / Material Data Contributor: Email	stacey.harper@oregonstat			
Material Type	metal oxide			
Manufacture Date				
Manufacturer	Sigma-Aldrich			200
Synthesis Process	Saura 🦉 dinay 334 milah kukanaga ku	D	Family	Core
Synthesis Precursors		nbi_0073	metal g	old [Au]
Purity	pure			
Types of Impurities		nbl_0075	metal g	(uA) blo
Primary Particle / Material Core Data:				
Primary Particle Size: Avg. (nm)	24.5	nbi_0072	metal g	old (Au)
Primary Particle Size: Min. (nm)	0			
Primary Particle Size: Max (nm)	49	nbi_0074	metal g	old [Au]
Method of Size Measurement	BET			
Instrument Used for Size Measurement		nbi 0076	metal g	old (Au)
Core Shape	irregular-angular			
Core Structure				
Crystal Structure				
Core Atomic Composition	silicon dioxide [SiO2];alumin	um oxide [/	4/203]	
Number of Core Atoms				
Mass Core Atoms (ng)				
Core Shell / Coating (if present):				
Shell Composition				24.54
Shell Surface Shape	Cancerenter	a Waightad	A4854	
Shell Linkage	0446	CZ Metric	CEllecto	-
Surface Linkages / Ligands (if present):	0.00	0.16	0.17	
Outermost Surface Functional Groups	0.00	0.40	0.75	0
Surface Chemistry Linkage Group / Type	0.04	0.64	1.72	0
Density of Surface Covered with Ligands (%)	0.40	0.47	1.47	
Minimum Number of Ligands	1	047	0.60	
Maximum Nunber of Ligands	10	040	1.55	
Complete Material:	50	1.05	5.04	
Mass of Core + Shell + Linkages and Ligands (ng)	250	1.04	1.00	
	191	1.68		

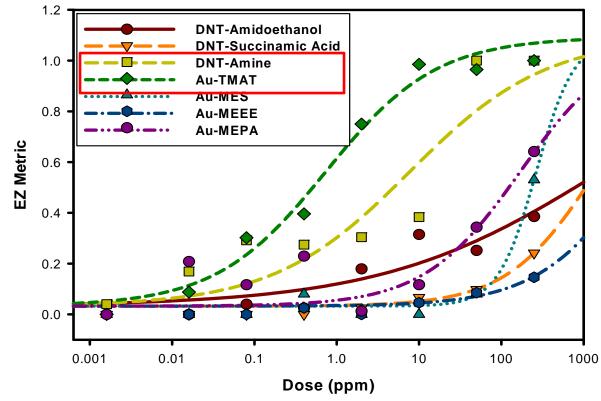

- nbi_0073 - nbi_0075 - nbi_0072 - nbi_0074 - nbi_0076

		1	Nanomaterial					E	Z Metri	ic					
D	Family	Core	Surface Chemistry	Shape	Size	Charge				Co	ncentratio	on			
nbi_0073	metal	gold [Au]	phosphatidylcholine	rod	7	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.00	0.00	0.15	0.23	0.52	0.60	1.00	View
nbl_0075	metal	gold (Au)	phosphatidylcholine	rod	14	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.00	0.09	0.24	0.43	0.84	0.82	1.06	Viev
nbi_0072	metal	gold (Au)	phosphatidylcholine	rod	7	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.04	0.00	0.00	0.08	0.21	0.34	0.78	1.00	Viev
nbi_0074	metal	gold [Au]	phosphatidylcholine	red	22	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values				0.00	0.00	0.00	0.34	0.75	0.83		1.00	Viev
nbi_0076	metal	gold [Au]	phosphatidylcholine	rod	14	0	control	16 ppb	80 ppb	400 ppb	2 ppm	10 ppm	50 ppm	250 ppm	Data
			Average Values		· · · · ·		0.00	0.06	0.19	0.35				1.03	Viev


			24.34	(fairs)	durela	6					1201	of as	shard	an .												
Concernmenter	Waighted	Adda	88		QP.		94		N		88		Y				Ε.		Sec.		2		0		88	
(sent)	CZ Metric	CZ Hintric	384	746	384	76	384	14	344	76	344	10	286	16	yes.	14	384	10	344	14	3MA	na	394	16	344	ne
0.00	0.16	0.17	4	-	۰.		۵	-	0	10	9	10	0	10	0	10	۵	10	0	10	0	10	0	10	0	
0.00	0.40	0.75	٥.	12	0	12	0	12	0		2		4		0		0		4		0		0		4	
0.08	0.64	1.72	0	12	۰.	+2	٥.	12	0	12	۵.	12	2	10		11	2	10	2	10	4	11			2	12
040	0.47	1.47	0	12		-	0	12	0	12	0	12	2						1	11	4	-			2	-
2	047	2.62			0	-	0	-11	0		2		2	7	2	7	2	π	2	7	2	7	2	7	2	7
10	040	1.55		**	2	4	٥	-	0	10	4	10	0	10			4		٥	10	0	10	0	10	5	1
90	1.05	9.09			4	7	٥	-	0		2		2		1	7		7	6	4	2		2		1	2
050	1.04	1.55	14		14	0		4		0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Clustering Analysis of EZ Metrics

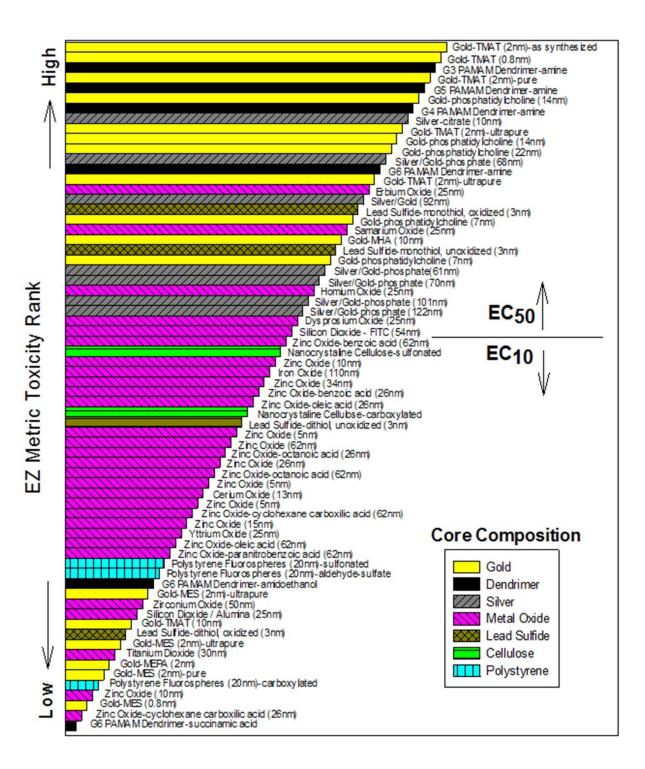
Embryonic Zebrafish Assay: Iterative Testing to Gain Knowledge



nanomaterial~biological interactions

Dose-Response of Weighted EZ Metric Scores

Gold and Dendrimer Dose-Response



Nanomaterial	Charge
DNT-amidoethanol	neutral
DNT-succinamic	negative (-)
acid	
DNT-amine	positive (+)
Au-MEEE	neutral
Au-MEPA	negative (-)
Au-MES	negative (-)
Au-TMAT	positive (+)

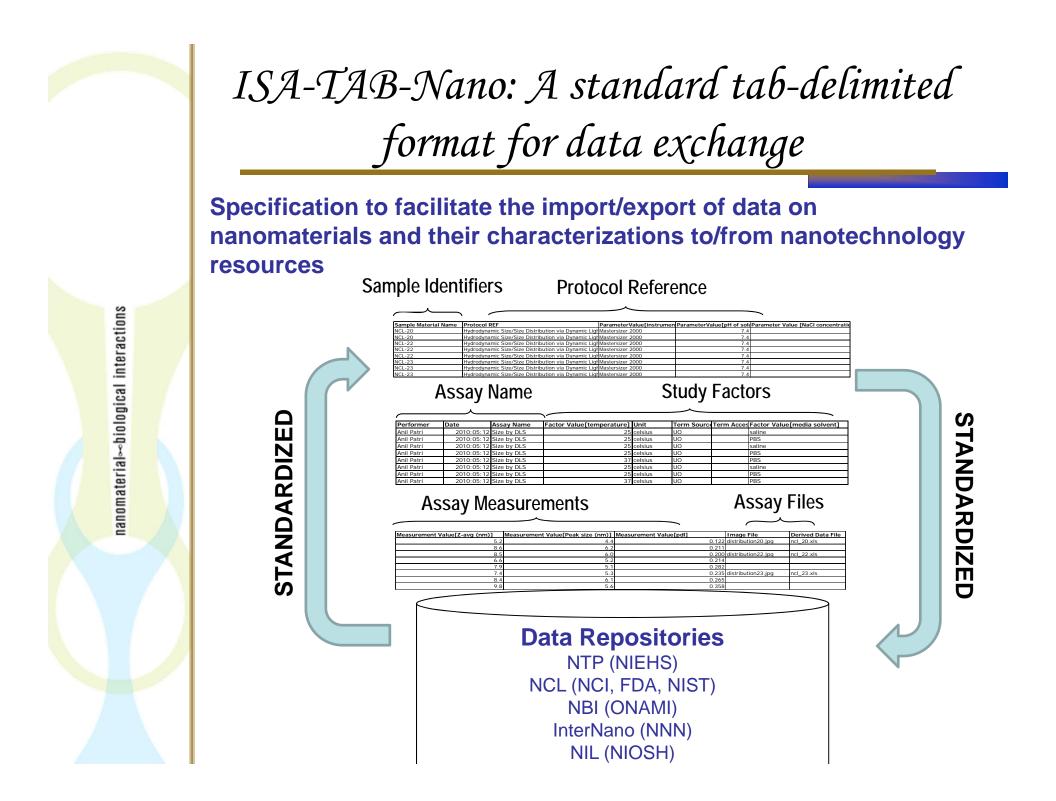
Nanomaterial Hazard Ranking Based on EZ Metric Scores

Color-coded to core composition

Embyronic Zebrafish Assay

EZ Metric for Nanomaterial Hazard ID

- A single metric representative of lethal and sublethal impacts on embryonic zebrafish in a screening-level assay
- Utility in hypothesis generation
- Rapid, low-cost whole animal model

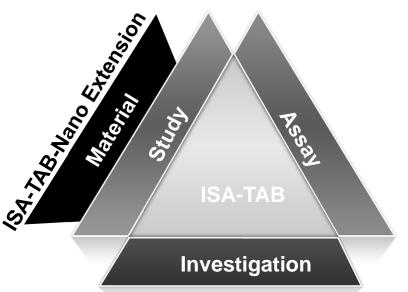

BUT...this is one type of organism in one exposure scenario

Movement toward weight-of-the-evidence will require additional datasets to be considered.

Toward a Community-Driven Informatics Framework

Current Limitations to Data Integration

- Protocols not standardized lack key information for replication
- Lack of standards for nanomaterial characterization and representing nanomaterial 'structure'
- Lack of standards for data sharing
- Nanomaterials studied often produced in small batches
 - Batch to batch variability
 - Limits sharing of nanomaterials for inter-laboratory testing
 - Material quantity is limited
 - Diversity of data
 - Inconsistency of data



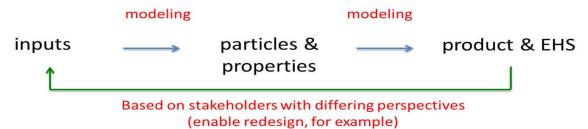
ISA-TAB-Nano Standard A tab-delimited format for data exchange

Describes data related to investigations, nanomaterials, studies and assays

Leverages and extends the Investigation/Study/Assay (ISA-TAB) developed by the European Bioinformatics

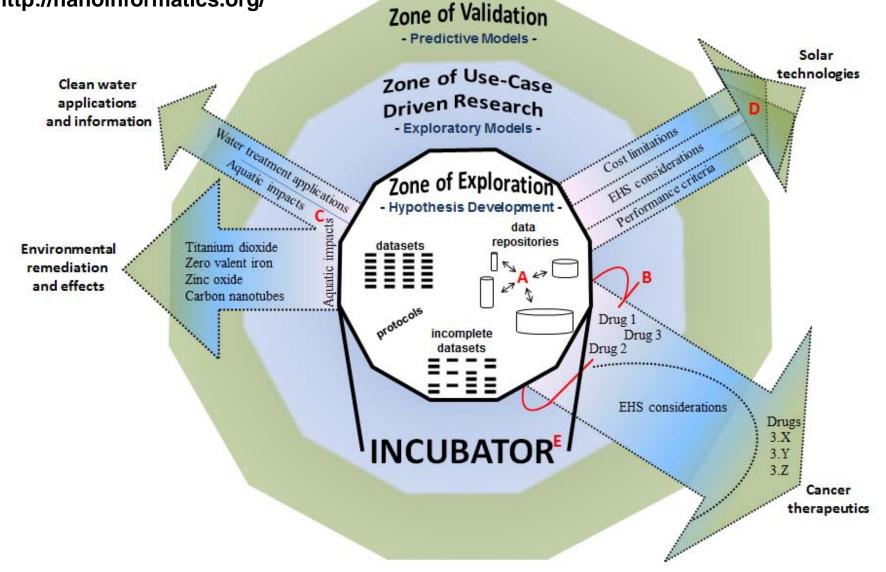
ISA-TAB-Nano supports ontology-based curation; nanomaterials and concepts from the NanoParticle Ontology (NPO)

ASTM E2909: Guide for Investigation/Study/Assay Tab-Delimited Format for Nanotechnologies (ISA-TAB-Nano): Standard File Format for the Submission and Exchange of Data on Nanomaterials and Characterizations


Toward a Community-Driven Informatics Framework

Promoting Data Integration

- Informatics framework can provide needed organization for diverse and often disparate data
- Application of weight-of-the-evidence to larger volume of data
- Data sharing mechanisms need to be expanded
 - ISA-TAB-Nano


nanomaterial-obiological interactions

- Community driven standards
- Use-case driven collaborations to define required information and level of detail
- Value added examples
 - Manufacturing performance:EHS measures

Thoughts from the 2012 Nanoinformatics Workshop

http://nanoinformatics.org/

Harper, SL, J Hutchison, N Baker, M Ostraat, S Tinkle, J Steevens, MD Hoover, J Adamick, K Rajan, S Gaheen, Y Cohen, A Nel, R Cachau and M Tuominen. 2013. Nanoinformatics infrastructure: Current resources, community needs, and the proposal of a collaborative framework for data sharing and information integration. Computational Science and Discovery, *In press.*

Thank you for your attention

"I'm on board for microbrews, but nanopizza is taking technology a step too far."

Balbus et al. (2005) Issues in Science and Technology