Non-PFC Plasma Chemistries for

Patterning Complex Materials/Structures

(Task Number: 425.038)

PIs:

• Jane P. Chang, Chemical and Biomolecular Engineering, UCLA

Graduate Students:

- Jack Chen, PhD student, Chemical and Biomolecular Engineering, UCLA
- Nicholas Altieri, PhD student, Chemical and Biomolecular Engineering, UCLA

Other Researchers:

- Taeseung Kim, postdoc, Chemical and Biomolecular Engineering, UCLA
- Michael Paine, undergraduate, Chemical and Biomolecular Engineering, UCLA

- Assess the feasibility of non-PFC chemistries in patterning etch-resistant materials (complex materials and structures)
- Identify non-PFC alternatives for the etching of carbon doped silica
- Examine the use of bond and group additivity methods to determine thermodynamic properties of carbon doped silica
- Screen the candidates of chemistries by comparing the pressure of primary etch product in the volatility diagram

Composition of Low-k Dielectrics^[1]

- Introduction of –CH₃ groups lowers the dielectric constant by replacing Si-O bonds with less polarizable Si-C and C-H bonds
- Porosity incorporates air (k = 1) into the film, thereby realizing a lower dielectric constant

PFC Usage in BEOL

US EPA's PFC emission model shows an average PFC emissions from semiconductor manufacturing for the evolution of complex devices^[17]

• Perfluorocarbon gases are used in BEOL for two major plasma processes: wafer patterning of thin films, especially dielectric films, and the in-situ cleaning of PECVD chambers

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[17] PFC reduction/Climate partnership for the semiconductor industry, US EPA (U.S. Environmental Protection Agency), (2008); [18] W. Worth, PFC Technical Update Session, SEMICON/WEST(1995)

Global Warming Potential

Chemistries	Atmospheric conc. in 2005 (ppt)	Con. since 1994* & 1998 (ppt)	Annual emission in late 1990s (Gg)	Radiative efficiency (W/m ² /ppb)	Lifetime (year)	Global Warming Potential	Ref.
CO_2	278x10 ⁶	358x10 ⁶ *	-	-	variable		[12]
CH_4	7x10 ⁵	1721x10 ³ *	-	-	12.2	21	[12]
N ₂ O	275x10 ³	311x10 ³ *	-	-	120	310	[12]
CHClF ₂	-	105x10 ³ *	-	-	12.1	1400	[12]
CF_4	74	-	~15	0.1	50,000	6500	[13]
CCl_2F_2	-	503x10 ³ *	-	-	102	7100	[12]
C_2F_6	2.9	3.4	~2	0.26	10,000	9200	[13]
CHF ₃	18	22	~7	0.19	270	11700	[12]
SF_6	5.6	7.1	~6	0.52	3,200	23900	[13]
NH ₃	-	-	0.054	-	2 hrs	0	[14]
NF ₃	< 0.1	-	~2.3	0.21	740	16800	[13]
C_2F_4	-	-	-	-	1.9 days	<1	[15]
CF ₃ I	-	-	-	-	2 days	1	[10]
C_6F_6	-	-	-	-	_	<1	[16]

→ GWP is a simplified index based upon radiative properties that estimates the potential impacts of gases on global warming

Target of Carbon-doped SiO₂ Etch

*Material Metrics as Specified by Intel (Dr. Suri)

Intel specified metrics:						
	Elements		Range(%)			
	Si		20%			
	0		40%			
	С		15-40% /			
	Porosity		20-25%			
	Thickness		100nm			
	Focus on:					
	1	Trench etch (later via)				
	0					

Selectivity to PR
 Sidewall damage

	Carbon	C	Comp			
Target	doping level	Si (%)	O (%)	C (%)	H (%)	Unit
1	Low	15.4	23.1	15.4	46.1	SiO _{1.5} CH ₃
2	\wedge	20	20	20	40	SiOCH ₂
3		12.5	12.5	25	50	$SiO(CH_2)_2$
4	High	18.2	27.2	36.4	18.2	SiO _{1.5} C ₂ H

• SEM of C-doped SiO₂ etch by CF₄/Ar [a]

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[a] Etching of high k dielectrics, Plasma Technology for Advanced Devices, 2006, http://clarycon.blogspot.com/2006/12/etching-of-high-k-dielectrics.html

Systematic Approach - Thermodynamic

- Thermodynamic approach can be systematic
 - If such data is available
 - NIST-JANAF Thermo-chemical tables
 - HSC Chemistry for windows, chemical reaction and equilibrium software with extensive thermo-chemical database
 - FACT, Facility for Analysis of Chemical Thermodynamics
 - Barin and Knacke tables (thermo-chemical data for pure substances and inorganic substances)
 - Determination of dominant surface/gas-phase species
 - Assessment of possible reactions
- Graphical Representation of thermodynamic analysis
 - Richardson Ellingham diagram
 - Pourbaix diagram
 - Volatility diagram

Effect of Doping

Gas	phase			Surfa	ace					
	NF ₃ with Oxygen-300K	G(eV)	log(K)		Si ₃ N ₄ -O ₂ -F-300K	G(eV)	log(K)			
Α	$O(g) + NF_3(g) \rightarrow NOF(g) + 2F(g)$ -0.70 11.7			1	$Si(c) + \frac{1}{2}O_2(g) \rightarrow SiO(g)$	-1.32	22.0			
В	$O(g) + NF_2(g) \rightarrow NOF(g) + F(g)$	-2.87	48.1	2	$\operatorname{SiO}_2(c) \rightarrow \operatorname{SiO}(g) + \frac{1}{2}O_2(g)$	7.56	-126.5			
C	$O(g) + NF(g) \rightarrow NOF(g)$	-5.45	91.5	3	$\frac{1}{2}Si_2N_2O(c) \rightarrow Si(c) + \frac{1}{2}N_2(g) + \frac{1}{4}O_2(g)$	4.47	75.0			
D	$\frac{2O(g) + NF_3(g) \rightarrow NO_2F(g) + 2F(g)}{NO_2F(g) + 2F(g)}$	-3.26	54.8	4	$\frac{1}{2}Si_2N_2O(c) + \frac{3}{4}O_2(g) \rightarrow SiO_2(c) + \frac{1}{2}N_2(g)$	-4.41	74.0			
<u> </u>	$2O(g) + NF_2(g) \rightarrow NO_2F(g) + F(g)$ $2O(g) + NF(g) \rightarrow NO_2F(g)$	-5.43	91.3	5	$\frac{1}{2}Si_2N_2O(c) + \frac{1}{4}O_2(g) \rightarrow SiO(g) + \frac{1}{2}N_2(g)$	3.15	-52.5			
Г	$2O(g) + NF(g) \rightarrow NO_2F(g)$	-8.01	134.0	15	$\operatorname{SiO}_2(c) + 4F(g) \rightarrow \operatorname{SiF}_4(g) + O_2(g)$	-10.00	168.0			
	NF ₃ -300K	G(eV)	log(K)	16	$SiO_2(c) + 2F(g) \rightarrow SiF_2(g) + O_2(g)$	1.39	-23.0			
G	$NF_3(g) \rightarrow NF_2(g) + F(g)$	2.17	-36.4	21	$\frac{1}{2} N_4(c) + \frac{1}{2} O_2(g) \rightarrow SiO(g) + \frac{2}{2} N_2(g)$	0.90	-15.0			
Н	$NF_2(g) \rightarrow NF(g) + F(g)$	2.58	-43.3	22	$\frac{1}{3}Si_{3}N_{4}(c) + \frac{1}{4}O_{2}(g) \rightarrow \frac{1}{2}Si_{3}N_{2}O(c) + \frac{1}{6}N_{2}(g)$	-2.25	37.7			
Ι	$NF(g) \rightarrow N(g) + F(g)$	2.84	-47.7	I		1	5717			
S	$I = NF(g) \rightarrow N(g) + F(g) = 2.84 -47.7$ $SiO_{2}(G) = \frac{SiO_{2}(G)}{V_{3}N_{2}/N} + \frac{SiO_{2}(G)}{SiO_{2}(G)} + \frac{F_{2}/F}{F_{2}/F} + \frac{SiO_{2}(G)}{SiO_{2}(G)} + \frac{F_{2}/F}{F_{2}/F} + \frac{150}{SiO_{2}(G)} + \frac{150}{SiO_{2}$									
	 Doping changes the etching characteristics 									

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Data for C-doped Silica is Limited

C-doped Silica	SiO ₂ ^[4]	SiO _{1.5} CH ₃ ^[4,5] (15.4%)	SiOCH ₂ ^[4,5] (20%)	SiO(CH ₂) ₂ ^[4,5] (25%)	SiO _{1.5} C ₂ H ^[4,5,6] (36.4%)
Molecular Structure	o si o	H ₃ ⁽¹⁾ , , , , , , , , , , , , , , , , , , ,	$\begin{array}{c} 0 & 0 \\ H_2C & CH_2 \\ 0 & J & I \\ 0 & Si & Si \\ 0 & H_2 & 0 \end{array}$	00 H ₂ C H ₂ C H ₂ C H ₂ C CH ₂	
Δ _f H (kJ/mol)	-910.87				
Δ _f S (J/mol)	-182.53		No data is	available	
Δ _f G (kJ/mol)	-856.11				

• The thermodynamic data of C-doped silica is not available in NIST, HSC chemistry and Perry's handbook

Bond and Group Additivity Method

H₃C 0 Si.,,,,,,, 0

- The <u>bond additivity and group additivity methods</u> proposed by Benson and Buss^[3], is used to determine the energy of formation for C-doped silica
- Test case of one unit $SiO_{1.5}CH_3$ (15.4%)

$$\Delta_{f} S_{carbon-doped \ SiO_{2}} = S_{carbon-doped \ SiO_{2}}^{\circ} - (nS_{Si}^{\circ} + xS_{O_{2}}^{\circ} + yS_{C}^{\circ} + zS_{H_{2}}^{\circ})$$

$$\Delta_{f} G_{carbon-doped \ SiO_{2}} = \Delta_{f} H_{carbon-doped \ SiO_{2}} - T \times \Delta_{f} S_{carbon-doped \ SiO_{2}}$$

Group / Bond	No. in SiO _{1 5} CH ₂	Enthalpy ^[5] (kJ/mol)	Entropy ^[5] (J/mol*K)			
SiO ₂ ^[6]	3/4	-910.9	-	T=300K	SiO ₂ ^[4]	SiO _{1.5} CH ₃
$CH_4^{[6]}$	3/4	-50.6	-	$\Delta_{\rm f} {\rm H}({\rm kJ/mol})$	-910.9	-746.2
Si-C	1	-25.1	57.9	$\Delta_{\rm f} S(\rm J/mol)$	-182.5	-324.8
Si-O	3	-	-5.2	$\Delta_{\rm f} G({\rm kJ/mol})$	-856.1	-648.8
C-H	3	-	54.0			
Total	-	-746.2	204.3			

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[3] S. W. Benson, ACS Symposium series 677, (1988) [4] NIST-JANAF Thermochemical (2013)

Compare AG for C-doped Silica

C-doped Silica	SiO ₂ ^[4]	SiO _{1.5} CH ₃ ^[4,5] (15.4%)	SiOCH ₂ ^[4,5] (20%)	SiO(CH ₂) ₂ ^[4,5] (25%)	SiO _{1.5} C ₂ H ^[4,5,6] (36.4%)
Molecular Structure	o si o	H ³ H ³ O	$\begin{array}{c} 0 & 0 \\ H_2C & CH_2 \\ 0 & J \\ 0 & Si \\ 0 & H_2 & 0 \end{array}$	00 H ₂ C H ₂ C H ₂ C CH ₂ CH ₂	
Δ _f H (kJ/mol)	-910.87	-746.20	-517.40	-538.00	-662.70
$\Delta_{\rm f} S$ (J/mol)	-182.53	-324.77	-44.88	-141.84	-328.86
Δ _f G (kJ/mol)	-856.11	-648.80	-503.90	-495.50	-564.10

• Compounds with fewer Si-O bonds are more readily etched

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Selection of Chemistry

- Comparison of non-PFC and PFC in C-doped silica etch
- Consider the additives such as H₂ and NH₃ to facilitate the formation of volatile C-containing compounds from highly-doped silica (>15%C)

Reaction	$\Delta G (eV)$
SiO ₂	
$\operatorname{SiO}_2(c) + 2\mathbf{CF_4}(g) \rightarrow \operatorname{SiF}_4(g) + 2\operatorname{COF}_2(g)$	-1.92
$\operatorname{SiO}_2(c) + 2\mathbf{CF_4}(g) + \mathbf{H_2}(g) \rightarrow \operatorname{SiF}_4(g) + 2\operatorname{COF}(g) + 2\operatorname{HF}(g)$	1.51
$\operatorname{SiO}_2(c) + 2\operatorname{CF}_4(g) + \operatorname{NH}_3(g) \rightarrow \operatorname{SiF}_4(g) + \operatorname{COF}_2(g) + \operatorname{HCN}(g) + \operatorname{HOF}(g) + \operatorname{HF}(g)$	3.03
SiO(CH ₂) ₂ (c) (25%C-doped silica)	
$\operatorname{SiO}(\operatorname{CH}_2)_2(c) + \operatorname{CF}_4(g) \rightarrow \operatorname{SiF}_4(g) + \operatorname{CO}(g) + \operatorname{C}_2\operatorname{H}_4(g)$	-2.67
$\operatorname{SiO}(\operatorname{CH}_2)_2(c) + \operatorname{CF}_4(g) + 2\operatorname{H}_2(g) \rightarrow \operatorname{SiF}_4(g) + \operatorname{CO}(g) + 2\operatorname{CH}_4(g)$	-4.43
$SiO(CH_2)_2(c) + CF_4(g) + 2/3NH_3(g) \rightarrow SiF_4(g) + CO(g) + 2/3HCN(g) + 4/3CH_4(g)$	-3.10

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with CF₄

• H_2 addition increases the etch product pressure – most effective with 25% C-doped silica

• NH₃ addition has little effect – most effective with 20% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with CHF₃

• H_2 addition increases the etch product pressure – most effective with 25% C-doped silica

• NH₃ addition has little effect – most effective with 20% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with CH₂F₂

• H₂ addition increases the etch product pressure – most effective with 25% C-doped silica

• NH₃ addition has little effect – most effective with 20% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with CH₃F

• H_2 addition increases the etch product pressure – most effective with 25% C-doped silica

• NH₃ addition has little effect – most effective with 20% C-doped silica

Etching with C₂F₄

• All chemistries are most effective with 36.4% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

 $Log P_{C_{6}F_{6}}(atm)$

• H₂ addition increases the etch product pressure – most effective with 25% C-doped silica

• NH₃ increases the etch product pressure – most effective with 15.4% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with NF₃

• NF_{3 is} most effective with 20% C-doped silica

Low Damage Etching with CF₃I^[8]

Etchant	Etch Rate (nm/min)	GWP
CF ₃ I	250	1
CF ₄	200	6500
C ₄ F ₆	410	290

- CF₃I produces less UV radiation
- I atoms scavenge F radicals to form IF_x
- Less damage to doped carbon keeps dielectric constant low

(a) Decrease in absorption corresponding to $Si-CH_3$ bond. (b) Increase in dielectric constant after etching. (c) Etch profiles of porous SiOCH.

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

[8] Eiichi Soda, et al. J. Vac. Sci. Tech. A 26, 875 (2008) - from Semiconductor Leading Edge Technologies, Inc., Japan & Tohoku University, Japan

Environmental Impact of CF₃I

Amount of fluorocarbons detected in exhaust in sccm. Feed gases are all 40 sccm except CF_4 (15 sccm) – CHF_3 (25 sccm).^[9]

Etchant	CF ₄ (6300)	CHF ₃ (12100)	CF ₃ I (1)	C ₂ F ₆ (12500)	C ₃ F ₈ (6950)	C_2F_4
CF ₄	29	0.6	-	2.3	0.6	0.6
CHF ₃	4.5	23	-	0.9	0.2	1.6
CF ₃ I	1.2	-	26	3.4	0.3	1.9
CF ₄ -CHF ₃	11	15	-	1.1	2.9	1.8

- Recombination in plasma forms high-GWP gases (CF_4 , C_2F_6)
 - CF₃I has less than 1/3 total impact on global warming compared to other fluorocarbons
- CF₃I photolyzes within days in atmosphere to eventually form CO₂, HF, and HI. ^[10]
 - This is responsible for GWP_{100} values ≈ 1 .
 - When released from sea level, CF₃I has small effect on ozone (ozone depletion potential = 0.018). ^[11]

[9] F. Fracassi, R. d'Agostino, J. Vac. Sci. Tech. B 16, 1867 (1998).

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Etching with CF₃I

• $CF_{3}I$ w/ and w/o NH_{3} – most effective with 20% C-doped silica

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Comparison of Etch Chemistries

The y-axis represents the normalized partial pressure of SiF_4 , one of the primary etch products. The normalization is with respect to the partial pressure of SiF_4 generated in CF_4 etching SiO_2 where all the thermodynamic data are from NIST JANAF Thermodynamic Table, 2013

SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Summary

- Volatility diagrams can be used to assess general trends in potential etchant chemistries
- Thermodynamic properties of carbon doped silicon model compounds were evaluated via established bond and group additivity methods
- Addition of hydrogen via H_2 in general increases the pressure of the primary etch product
- Non-PFC alternative chemistries C_2F_4 , C_6F_6 , NF₃, and CF₃I are shown to be more effective in producing SiF₄ from each of the carbon doped species than fluoromethanes (e.g. CF₄, CHF₃, etc)
- With the exception of NF₃, each of the etchants examined have relatively low global warming potentials (GWPs); however, NF₃ can be effectively abated through thermal processes
- CF₃I is not as effective as NF₃, yet still viable, due to less environmental impact

Reference

- [1] Vasarla Nagendra Sekhar (2012). Mechanical Characterization of Black Diamond (Low-k) Structures for 3D Integrated Circuit and Packaging Applications, Nanoindentation in Materials Science, Dr. Jiri Nemecek (Ed.), ISBN: 978-953-51-0802-3, InTech, DOI: 10.5772/53198. Available from: http://www.intechopen.com/books/nanoindentation-in-materials-science/mechanicalcharacterization-of-black-diamond-low-k-structures-for-3d-integrated-circuit-and-packaging
- [2] W. Volksen, R. D. Miller, G. Dubois, Chem. Rev. 110, 56 (2010).
- [3] S. W. Benson and Norman Cohen, "Chapter 2, Current Status of Group Additivity" compiled by Karl K. Irikura and David J. Frurip, in "Computational Thermochemistry," ACS Symposium series 677, (1988).
- [4] NIST-JANAF Thermochemical Tables. http:// http://kinetics.nist.gov/janaf/ (accessed 2013).
- [5] H. E. O'Neal, M. A. Ring, Inorganic Chemistry 5, 435 (1966).
- [6] CRC Handbook of Chemistry and Physics. http:// www.hbcpnetbase.com/ (accessed August 12, 2013).
- [7] K. Yonekura, et al., J. Vac. Sci. Tech. B 22, 548 (2004).
- [8] E. Soda, et al. J. Vac. Sci. Tech. A 26, 875 (2008).
- [9] F. Fracassi, R. d'Agostino, J. Vac. Sci. Tech. B 16, 1867 (1998).
- [10] Committee on Assessment of Fire Suppression Substitutes and Alternatives to Halon, Naval Studies Board, Commission on Physical Sciences, Mathematics, and Applications, National Research Council, *Fire Suppression Substitutes and Alternatives to Halon for* U.S. Navy Applications; National Academy Press: Washington, D.C., 1997.
- [11] Y. Li, K. O. Patten, D. Youn, D. J. Wuebbles, Atmos. Chem. Phys. 6, 4559 (2006).
- [12] United Nations Environment Program(UNEP), 2010.
- [13] W. Tsai, J. Hazard. Mater., 2008.
- [14] Ammonia as a Refrigerant, ASHRAE, 2006.
- [15] S.Takahashi, et al. Japan. J. Appl. Phys. 44, L781 (2005).
- [16] R. Chatterjee, et al. J. Elec. Soc. **148**, 12 (2001).
- [17] PFC reduction/Climate partnership for the semiconductor industry, US EPA (U.S. Environmental Protection Agency), (2008) (http://www.epa.gov/semiconductor-pfc/basic.html)
- [18] W. Worth, PFC Technical Update Session, SEMICON/WEST(1995)