Fate of Silica Nanoparticles during Secondary Wastewater Treatment

Reyes Sierra-Alvarez, Lila Otero, Chao Zeng, Farhang Shadman, Jim A Field

Dept. Chemical and Environmental Engineering The University of Arizona Rsierra@email.arizona.edu

August 14th, 2014

Engineered nanoparticles

• Nanoparticles (NPs) are particles sized in less than 100 nm.

Unique Properties of NPs

- Small size
- High specific surface area
- Optical properties
- Semiconductor properties.....

Applications of SiO₂ nanoparticles

- Personal care products
- Varnishes
- Food additive

• Diagnostic and

biomedical research

EHS Concerns about SiO₂ NPs

- Multiple studies indicate that some SiO₂ NPs cause toxicity.
- Recent studies suggest that <u>fumed SiO₂</u> is more toxicity than <u>colloidal SiO₂</u> (Zhang et al. 2012).

Zhang et al. 2012. J. Am. Chem. Soc. 134:15790-15804

Impact of fumed $SiO_2(A)$ and colloidal $SiO_2(B)$ on viability of human bronchial epithelial cells

CMP NPs & Wastewater Treatment

Activated Sludge (A/S) Process

点(21%)。 一种目的

Biodegradable
Organic Matter

$$+ O_2$$
 \rightarrow Cells $+ H_2O + CO_2$

 biomass
 biomass

Biological wastewater treatment: Possible NP removal mechanisms

Gravity Settling

Entrapment by A/S flocs

Fate of SiO₂ NP during municipal wastewater treatment

- Lack of reports on the fate of SiO₂ NP during biological wastewater treatment
- Iron oxide (core)-SiO₂ (shell) NPs <u>not</u> removed by **primary treatment** (settling process, prior to biological treatment). NPs coated with nonionic surfactant effectively removed (Jarvie et al, 2009).
 - NP conc. used very high!! 2470 mg/L

Jarvie et al. Environ. Sci. Technol. 2009, 43, 8622–8628

High background SiO₂ levels in wastewater can interfere with analysis of SiO₂ NPs

- Natural waters contain dissolved and suspended forms of silica
- Dissolved silica in natural waters varies from ca. 1–3 mg/L in mountain lakes to 50–300 mg/L in well waters in volcanic and oil production fields (Ning 2002)*
- Fluorescent SiO2 NPs valuable to study the fate of nano-SiO2 during wastewater treatment.

Raffaelle 2006. http://spie.org/x8613.xml

*Ning, Desalination, 151 (2002) 67-73.

Objectives

• To investigate the fate of SiO₂ NPs during conventional biological wastewater treatment.

• To study the mechanisms contributing to the removal of SiO_2 NPs in the activated sludge process.

SiO₂ NP Synthesis: Water-in-Oil Microemulsion Method

Adapted from Bonachi et al. 2011. Angew. Chem. Int. Ed. 50, 4056 - 4066

Synthesis of Fluorescent SiO₂ Nanoparticles

Rhodamine B isothiocyanate

Sentra et al. 2001. Anal. Chem. 73(20):4988-4993,

Fluorescent SiO₂ NPs: TEM

Average particle size: 88 ± 7 nm

Polydispersity: 0.315

Fluorescent SiO₂ NPs: Zeta potential vs pH

Fluorescent SiO₂ NPs: Zeta potential vs pH

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Fluorescent SiO₂ NPs: Average Particle Size vs. pH

Lab-Scale Activated Sludge Bioreactor

Aeration tank:

$$V_{reactor} = 1.19 L$$

HRT = 9.9 hrs

Settler:

$$V_{reactor} = 0.6 L$$

Temp: 22°C

[1] NPs stock; [2] peristaltic pump feeding NPs; [3] activated sludge
bioreactor; [4] settling tank; [5] peristaltic pump feeding
wastewater; [6] effluent; [7] influent; [8] aeration

Synthetic Wastewater

Composition according to OECD guidelines*

Peptone	160 mg/L
Meat extract	110 mg/L
Urea	30 mg/L
K ₂ HPO ₄	28 mg/L
NaCl	7 mg/L
$CaCl_2.2H_2O$	4 mg/L
$Mg2SO_4.7H_2O$	2 mg/L
NaHCO ₃	150 mg/L
COD concn.	270 mg/L

F-SiO₂

7.9 ± 1.7 mg/L

* OECD GUIDELINE FOR THE TESTING OF CHEMICALS Simulation Test - Aerobic Sewage Treatment: 303 A: Activated Sludge Units. OECD 303, January 2001

Reactor Monitoring

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Particle size and zeta potential of SiO₂ NPs in wastewater

Fluorescent SiO₂ NPs: Leaching behavior in wastewater

Operation and Performance of the Activated Sludge Process

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Suspension of fluorescent SiO₂ NPs stable in the synthetic OECD wastewater

Association of SiO₂ with Activated Sludge

Bright-field (A) and epifluorescence (B) images of activated sludge biomass.

Conclusions

- Continuous-flow bioreactor studies demonstrated that biological treatment (*i.e.* activated sludge) has a limited ability to remove SiO₂ NPs from the synthetic wastewater used.
- Removal of SiO₂ NPs was mainly due to NP association with the biomass. The suspension of fluorescent SiO₂ NPs was stable in the synthetic wastewater used in this study.
- SiO₂ did not cause microbial inhibition, as demonstrated by the high COD removal efficiency.

Future plans

• Investigate the fate of CMP NPs and III/V species (In, Ga, As)

in CMP effluents during wastewater treatment.

Acknowledgments

- Dr. Lila Otero, Chao Zeng
- Dr. Farhang Shadman & Dr. Jim A. Field
- Dr. C. Aspinwall and Isen A. Calderon
- ERC support

Related Publications

- Gonzalez-Estrella J, Puyol D, Sierra-Alvarez R, Field JA. 2014. Role of biogenic sulfide in attenuating zinc oxide and copper nanoparticle toxicity to acetoclastic methanogenesis. (*Under review*).
- Otero-González L, Field JA, Sierra-Álvarez R. 2014. Inhibition of anaerobic wastewater treatment after long-term exposure to low levels of CuO nanoparticles. *Water Res.* **58**:160-168.
- Gonzalez-Estrella J, R. Sierra-Alvarez, JA Field. 2013. Toxicity assessment of inorganic nanoparticles to acetoclastic and hydrogenotrophic methanogenic activity in anaerobic granular sludge. *J. Hazard. Mater.* **260**:278-285.
- Otero-González L, Field JA, Sierra-Alvarez R. 2014. Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment. *J. Environ. Management*. 135:110-117.
- Gomez-Rivera F, JA Field, D Brown, R Sierra-Alvarez. 2012. Fate of cerium dioxide (CeO₂) nanoparticles in municipal wastewater during activated sludge treatment. *Bioresource Technol*. 108:300-304.
- Rottman J, F Shadman, R Sierra-Alvarez. 2012. Interactions of inorganic oxide nanoparticles with sewage biosolids. *Water Sci. Technol.* **66**:1821-1827.

Thank you!

