

Interaction of carbon nanotubes and graphene nanoplatelets with wastewater biomass <u>Paul Westerhoff</u> Yu Yang, Takayuki Nosaka, Kyle Doudrick^{*}, Zhicheng Yu, Pierre Herckes, Kiril Hristovski

Arizona State University (Tempe, AZ)

*University of Notre Dame

Presentation Objectives

- Sorption of CNT & Graphene Oxide to wastewater biomass
- Overcoming analytical challenges in measuring graphene oxide in presence of biomass

Carbon Nanomaterials

- 2-D materials
 - Graphene
 - Graphene Oxide
- 3-D materials
 - Fullerenes/fullerols
 - SWCNT
 - MWCNT
 - Functionalized
 - Non-functionalized
- Wide variety of applications

Kiser et al., Water Res., 2010

Batch Sorption Experiments

- Prepare nanomaterials in 1 mM NaHCO₃
- Fresh wastewater biomass
- Mixing time = 3 hours
- Settling time = 30 min
- Centrifuge out biomass (if needed) = 5 min at 1000 G
- Analyze supernatant for nanomaterial
- Quick test

NP + 400 mg TSS/L Biomass Sorbent

Nanoparticle Control (No Biomass Sorbent)

NP + 800 mgTSS/L Biomass Sorbent

Kiser et al., ES&T (2012)

GO & Few-Layer Graphene (FLG)

SEM images of GO

SEM images of FLG (with gold sputtering)

Graphene Oxide (GO) Results

 GO analysis at high concentrations achievable by UV/VIS

 Biomass can "release" soluble organics during 3 hr batch sorption that cause absorbance

 Approach- subtracted out background signals to quantify GO sorption

Initial GO Concentration = 25 mg/L

After mixing for 3 hrs and settled for 30 min

Biomass: 50 mg/L 100 mg/L 500 mg/L 1000 mg/L 2000 mg/L 3000 mg/L GO control

Supernatant after centrifuged at 1000 G for 5 min

Biomass: 50 mg/L 100 mg/L 500 mg/L 1000 mg/L 2000 mg/L 3000 mg/L

After subtracting the absorbance of biomass control

GO Association with Biomass

Graphene - Biomass

- Similar approach for graphene as GO
 - Lower absorbance from light scattering
- Graphene Removal with Biomass:
 - 0% removal with 50 mg/L biomass
 - 10% removal with 100 mg/L biomass

Functionalized CNT Samples (from H. Fairbrother/JHU) After Sonicate for 1 hr

CNTs with different percentage of Oxygen:0.3%3.5%6.4%7.3%8.3%

Absorption of CNT with 8.3% O on the biomass

Samples of CNTs with 8.3 % Oxygen

After mixing for 3 hrs and settled for 30 min

Even in Control sample (complete removal of CNTs)

Biomass had no adverse effect on CNT removal

Biomass: 50 mg/L 100 mg/L 500 mg/L 1000 mg/L 2000 mg/L 3000 mg/L CNT Control

Challenges

- Low level GO or CNT analysis not possible by UV/VIS alone
 - Biomass causes background UV/VIS interference
 - UV/VIS is non-specific
- Need a specific GO (CNT) analytical method
- Quantification using thermal combustion methods have worked well previously for CNTs
 - We previously observed challenges for oxidized CNTs because surface oxygen "burned" CNTs at similar temperatures as organic matter
 - Thermal methods have low detection limits for CNTs of ~ 3 ug (Doudrick et al., ES&T 2012)

Elemental Carbon/Organic Carbon Analyzer

Programmed Thermal Analysis (PTA)

Sensitive calibration curves

Improve separation of GO signal from background organics

- Add reductant (NaBH₄)
- Reduced graphene

 oxide (RGO) analysis
 by XPS yields
 decreases number
 of C-O & C=O bonds
 by > 5 fold
- PTA thermogram improves

Adding SolvableTM to degrade organics

- Solvable is an alkaline digestate that degrades organics; surfactant helps separation
- Solvable + NaBH₄ produces good pellet for separation & analysis

GO or FLG

spiked into wastewater biomass

- Allows quantification *in* biomass (rather than in water column as achieved by UV/VIS)
- Detection limits (MDL) are
 ~ 2 ug GO or FLG
- Higher recoveries: 80% to 110%
- Low background interference at low biomass doses*

Final Digestion Method to Handle LCm Separation of FLG, GO (or CNT) from High Biomass Concentrations (1 g/L)

Application to FLG sorption to Biomass

- Fixed biomass concentration
 - 50 mg/L
 - Higher biomass concentrations are now capable with optimized digestion method
- Variable initial graphene concentration
 - 0.3 to 8.3 mg/L
 - Lower than with UV/VIS
 - Very small background PTA signal from 50 mg/L biomass
- Consistent removal (10±3%) of graphene by 50 mg/L biomass

Conclusions

- Functionalized CNTs
 - Dispersible in water
 - Readily aggregate, settle within pH and mixing conditions relevant to wastewater treatment (even without biomass)
- Graphene oxide & graphene:
 - Associates with biomass and will accumulate in biosolids
 - Existing analytics (UV-VIS) were limited to high concentrations
 - UV/VIS able to quantify GO or FLG in supernatant
- PTA was developed for GO & FLG in Biomass
 - Optimized method uses Solvable + 2% NaBH₄
 - Low detection limits
 - Allows determination of GO in biosolids

Acknowledgements

 Semiconductor Research Corporation (SRC) Task #425.040

- NSF (CBET 1336542)
- NSF/ASEE Small Business Research Diversity Postdoctoral Fellowship
- EPA #RD8355801
- Howard Fairbrother / Johns Hopkins University – providing functionalized CNTs

