NANOPARTICLE TOXICITY ON AIRWAY EPITHELIAL CELLS

CARA L. SHERWOOD

RESPIRATORY CELL PHYSIOLOGY LAB UNIVERSITY OF ARIZONA SEPTEMBER 13, 2011

Presentation Outline

- Introduction to airway epithelial biology
- Characterization of engineered nanoparticles (ENPs) and micron-sized particles
- Cytotoxicity testing (live/dead assay vs. RTCA)
- ATP-induced cellular signaling (RTCA)
- Ca²⁺ signaling using digital imaging microscopy
- Conclusions

Conducting Airway Epithelium

• The conducting airway epithelium provides first line of defense from inhaled particulates and pathogens

http://www.mfg.mtu.edu/cyberman/environment/air/anatomy.html

• Our cell line (16HBE140-) models the airway epithelium

Particulate Matter Studies

- Studies examined particulate matter in pollution (PM_{10} and $PM_{2.5}$)
 - Increased mortality and morbidity due to cardiovascular and respiratory effects
 - Increased hospital admissions in patients with chronic obstructive pulmonary disease (COPD) and asthma
- Ultrafine particles (ENP size) cause inflammation and airway epithelium injury
- ENPs are similar in size, but have different physical/chemical properties

Characterization of HfO₂ particles

- Particle characterization is important in elucidating affected cellular mechanisms
- Measured particle size distribution (PSD) for HfO₂ ENPs
- Only a fraction of HfO₂ ENPs were in the nano-range (i.e. <100 nm)

 PSD for micron-size HfO₂ was wide, with average particle size 6.768 μm

Examination of HfO₂ ENP cytotoxicity:

live/dead assay

Fluorescent Assay:

- Grew 16HBE140- cells to confluence (24 mm tissue culture wells)
- Incubated 16HBE14o- cells in culture media +/- ENPs for 2 hr
- Evaluated cytotoxicity with fluorescent dyes
 - Cell permeant green dye (Calcein-AM) = live cells
 - Cell impermeant red dye (ethidium homodimer) = dead cells

Limitations:

- Single time point response
- Time-intensive analysis (not high-throughput)

Examination of HfO₂ ENP cytotoxicity: Real Time Cell Analysis (RTCA)

- RTCA measures cellular lipid contact with E-plate surface
- Quantified by "cell index"
 - Change in impedance divided by background value
- Cytotoxicity is indicated by a dramatic loss in cell index

- Compared ENP HfO₂ with micronsized HfO₂ and untreated controls
- No significant difference in HfO₂ cytotoxicity between different sized particles

Beyond cytotoxicity: cellular effects of HfO₂

- Cell death is the end point for toxicity testing
- Detrimental cellular effects can occur in the absence of cell death
 - Cell transformation e.g., Cancer
 - Loss of ability to respond to cellular signals or stress
- Are there adverse effects in lung epithelial cells from HfO₂ ENPs exposure in the absence of cell death?
- We used the RTCA to evaluate low-dose ENP exposure on ATPinduced airway epithelial cell signaling
 - Alterations in ATP signaling is associated with innate immune impairment and chronic lung diseases
 - ATP initiates an immediate physiological response that translates to an increase in cell index when measured by RTCA

Quantification of physiologic response to ATP following ENP and micron-sized HfO₂ exposure

- 24-hr incubation with low-dose ENP HfO₂ reduces physiologic response to ATP:
 - P <0.05 at 100 μM ATP (0 vs. 50 and 250 ppm)
 - P <0.05 at 30,10, and 3 μM ATP (0 vs. 250 ppm)
- 24-hr incubation with low-dose micron-sized HfO₂ reduces physiologic response to ATP:
 - P <0.05 at 100 μM ATP (0 vs. 50 and 250 ppm)
 - P <0.05 at 30 μM ATP (0 vs. 250 ppm)

Ca²⁺ signaling is downstream of ATP

- ATP mediates an increase in intracellular Ca²⁺ concentration ([Ca²⁺]_i)
- ATP can activate P2 receptors and increase [Ca²⁺]_i
 - P2Y receptors are G proteincoupled receptors
 - P2X receptors are cation-selective ion channels activated by ATP

• Hypothesis

• Exposure of airway epithelial cells to low-dose HfO₂ will decrease their [Ca²⁺]_i response to ATP

HfO₂ ENPs reduce ATP-mediated Ca²⁺ signaling

- Confluent monolayers of 16HBE14o- cells were incubated with low-dose HfO₂ ENPs for 24 hr
- 1 μ M ATP was applied exogenously and intracellular Ca²⁺ [Ca²⁺]_i monitored for 3 minutes

Quantification of Ca²⁺ signaling

- Cells that increase [Ca²⁺]_i to 200 nM or more are considered positive
- Low-level ENP concentrations below cytotoxic levels have reduced ATP-mediated Ca²⁺ signaling
- Micron-sized HfO₂ showed some variation in ATP-mediated Ca²⁺ signaling that was not significantly reduced

 These graphs demonstrate HfO₂ Ca²⁺ signaling reductions are due to metals toxicity more than particle size

Conclusions

• Size of ENPs

• Size reported by manufacturer should be verified

- HfO₂ ENPs did not cause significant cell death
- Sub-cytotoxic exposures to HfO₂ can alter mechanisms of innate immune function in lung epithelial cells
 - Cellular response to ATP is altered by ENP exposure (RTCA)
 - ATP-mediated [Ca²⁺]_i response reduced by ENP exposure (Ca²⁺ imaging)
 - ENP altered ATP-mediated $[Ca^{2+}]_i$ response appears to be a metals toxicity

Acknowledgements

- Work in this study
 - Mia McCorkle, M.S.
 - Scott Boitano, Ph.D.

• Funding

- SRC/Sematech Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (James A. Field (P.I.), Scott Boitano, Farhang Shadman, Buddy D. Ratner, Chris Barnes, and Reyes Sierra-Alvarez)
- Intel Foundation fellowship (Mia McCorkle)